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the molecular-to-metallic hydrogen transition
pressure. The best avaiiable effective inter-
action potential is utilized in calculating

the equation of state for sclid molecular hydro-
ger:. The equation of state of metallic hydrogen
ts determined by four different methods and the
possible range of molecular-to-metallic hydrogen
is largely respansible for the wide discrepancy
in calculations of the transition pressure,
Metastability of metallic hydrogen is discussed
and the experimental high-pressure reseavrch par-
tinent to the determination of molecular-to-metallic
hydrogen transition pressure is reviewed ZJt is
pointed out that the recently proposed c;tSipt
of the molecular-insulating phase beccming a
molecuiar-conducting phase duc to narrowing and
closing of the band gap under high pressure pro-
vides a more 1likely explanation for the experi-
mentally observed decrease in the electrical
resistivity of molecular hydrogen observed in
both static and shock-wave experiments and
attributed Lo the molecular-to-metallic tran-
sftion of molecular hydrogen. wf. (Author)
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PREFACE

; This report* ia part of a continuing Rand study of selected

% areas of science and technology, a project sponsored by the Defense

' Advanced Research Projects Agency. It deals with metallic hydrogen--
i.e., a metallic phase of hydrogen that, according to theory, should
exist at extremely high pressures (P 3 1 Mbar). The possibility
exists that metallic hydrogen may be an elevated temperature supar-

; conductor, a very efficient rocket fuel, or a powerful explosive.

! This report deals with the theoretical calculations of the equations

| cf state of both molecular and metallic hydrogen required for calcu~
lations of the transition pressure into the metallic phase. The range
of pressures at which metallic hydrogen transition should occur is
estimated. Metastability (i.e., stability of metallic hydrogen at

low pressures) is discussed. The experimental data used in calculating

the molecular equation of state of hydrogen are summarized and the
experimental high-pressure research pertinent to molecular-to-metallic
hydrogen transition is reviewed. This report is intended for investi-
gators speclalizing in high-pressure research and scientists interested
in molecular and metallic hydrogen.

*
One of the coauthors of the report, Dr. M, Ross, is with the
Lawrence Livernore Laboratory, University of California,
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A, GENERAL

Hydrogen, a molecular gas under atmospheric pressure and at room
temperature, becomes a fluid at a temperature of 20.4 K and solidifies
at a temperature of -~14 K, becoming a low-density quantum solid having
dielectric properties. Both thecretical and experimental research
indicate that, at sufficiently high pressures (commonly thought to
be between 1 and 4 Mbar), molecular hydrogen should undergo a phase
transition into a metallic state, The new phase, metallic hydrogen,
should have properties aimilar :o those of alkali metals.

The potential usefulness of metallic hydrogen can be attributed
to several factors. As a result of its high Debye temperature (~2000
to 3000 K) it may be an elevated-temparature (possible room tempera-
ture) auperconductor.* The high specific impulse of metallic hydrogen
(~1400 sec) compared with that of a rocket fuel, such as JP4 plus lig-
uid oxygen (~400 sec), makes it potentially attractive as a rocket fuel,
Metallic hydrogen has an energy content of 400 *-J)/g mole, or 300 times
greater than the best currently available aircraft fuel. This would
make it attractive for aircraft propulsion. However, if the transi-~

tion energy release rate is not controllable once the transiuion is
initiated, metallic hydrogen would be an explosive rather than a fuel,
1f so, with energy of 50 kcal/g and a density of ~1 to 1.3 g/em3, it
is an explosive that is apprcxiuately 35 times more powerful than TNT
(E = 1,354 kcal/g). 1Its high density should also make metallic hydro-
gen useful in nuclear weapons.

Several major problems have to be reasolved before it can be

determined whether metallic hydrogen can be produced in the laboratory !
and whether it will be technologically useful. The most important ﬁ

problems are whether metallic hydrogen exists, whether transition into

*
Unfortunately, the high Debye temperature of metallic hydrogen
also indicates that it may be a quantum liquid.
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the metallic state will occucs at a pressure that can be reached in

a static press, and whether metallic hydrogen will remain metasteble.

B. THEQRETICAL RESEARCH

The transition pressure~--i.e., the pressure at which molecular

hydrogen will undergo phase transition into its metallic phase--can

be estimated theoretically frorm tne intersectioa of the curve of Gibbs
free energy of molecular hydrogen, plotted as a function of pressure,
with a similar curve for metallic hydrogen. The point of intersection
is extremely sensitive to small changes in these curves, causing a
wide discrepancy in the estimates of the transition pressure. Since
the variation of the Gibbs free energy with pressure is determined
from the equation of state, theoretical determination of the transi-
tion pressure into metallic hydrogen requires extremely accurate
inowledge of the equations of state of both molecular and metallic
hydrogen., A reliable prediction of the transition pressure is
extremely vital even if intended only to guide the experimentalist

in his design of the optimum apparatus for this extreme pressure.

In addition to the basic question of transition pressure, the
usefulness of metallic hydrogen depends on the length of time hydrogen
can exist in the metallic state, i.e, its metastability. This theo-
retical predictio; is the most elusive aspect of the overall problem.

Thus, the three major aspects of the theeretical research on
metallic hydrogen involve the determination of its molecular esqua-
tion of state, its metallic equation of state, and its metastability.

1, Equation of State of Molecular Hydrogen

The present status and reliability of the theoretical equation
of etate of molecular hydrogen js closely related to the reliability
and extent of the available experimental data. While, in principle,
it is possible to calculate the forces between molecules and to com-
pute their properties, these calculations all involve some approxima-
tions whose ultimate justification is based on comparison with the
experimental data. It is obviously desirable to carry out equation
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of state measuremants at the highest attainable pressures in order
to minimize ths uncertainty in the thecretical model.

The basic experimental data available at present iz a low
pressure (P € 25 kbar) solid isotherm and a few Hugoniot (shock
compreasion) points for liquid molecular hydrogen at pressures
ranging from 40 to 900 kbar. The lower pressure solid data, while
lesa useful for extrapolating into the multimegabar range, is consid-
erably more accurate than the shock data. In general, an advantage
of shock wave experiments in the equation of state studies is that
the high temperatures achieved during shock compression act to bring
neighboring molecules much closer together thar in static compression
to the same density, resulting in a higher "effective'" density. Thus,
shock experiments are well suited for the determination of the effec-
tiva pair potential at prassures near tne transition of hydrogen into
the metallic phase. A third class of experiments, isentropic compres-
sion, can also be used to verify the molecular equation of state,
However, isentropic compression has not yet provided direct pressure
measurements, Inatead, pressure has been calculated using a magneto-
hydrodynamic code. Therefore, these data are insufficlently accurate
to bte useful in determining the equation of state.

Rec:nt theoretical calculations show that tne pressure of solid
hydrogen Lo 25 kbar can be computed from a semi-theoratical pair poten-
tial of molecular hydrogen, and that the resuits of the calculattions
are in good agrerment witn the experimental data. In this regime of
intermediate separations, the quantum mechanical methods are not
convergent and a purely theoretical pair potential cannot presently
be obtailned. However, at higher pressures, where the methods are
coavergent, the molecular equation of state may well be inadequate
due to the omission of many-body terms. This could explain the dis-
crepancy between theoretical Hugoniots based on first principle pair
potentials and the experimental shock compression curves for liquid
hydrogen. Improved theoretical calculations of the overall pair
potential would incorporate higher order interaction terms.

Ideally, one would like to make calculations for the system of
molecules in a crystal, rather than calculations for pairs of molecules,

which are then summed over all pairs of molecules.

R
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Preliminary celculations of this nature have already been made, and,
although they have not provided additional ecuation of state data,
these calculations have predictud closing of the band gap. This
indicates that the molecular insulating phase of hydrogen could
become a molecular conductor at pressures below that of the predicted
monatomic metallic transition. Should this be the case, then the
experiments that wers designed to identify the monatomic metallic
transition from the large change in electrical resistivity would not
be uneful. The existence of a decreasing band gap even in the absence
of the transition into a molecular conductor prior to the metallic
transition would have broad implications concerning the interpretation
of shock and isentropic experiments and the 0 K equation of state.

2. Equation of State of Metallic Hydrogen

Until metallic hydrogen is available in the laboratory, its
equation of state must he determined theoreticallv. 1In general,
calculations of the equation of state and other thermodynamic param-
eters of metallic hydrogen have given more consistent results than
those for the molecular hydrogen. For example, the earliest calcula-
tions, using the approximate cellular method (an early varsion of the
Wigner-Seitz method), do not differ greatly frow the most recent self-
consistent calculations, using the same method with an improved
correlation potential energy function.

There are four general methods by which the equations of state
of metals are commonly computed using current solid state theory,
These are: (15 ¢lectron band me~hods, such as the augmented plane
wave (APW); (2) free electron perturbation theory (PERT); (3) linear
combination of atomic orbitals (LCAO); and (4) the Wigner-Seitz (WS)
method. The most commonly used method has been the free electron
rerturbation theory. All calculations assume that the stable structure
at 0 K 1s a solid; however, the possibility that it may be a quantum
1liquid cannot be ruled out. In view of tne fact that all four methods
ave approximations, it is very difficult, if not impossible, to deter-
mine the sosclute accuracy of the results of calculations, or even
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the best method of performing these cal:ulations. Howeve:r, these
methods can be compared and it can be determinec how sensitive the
computed metallic transition is likely to be.

In general, the zquation of state of metallic hydrogen includes
contrihuiions from various interactions, as well as a contribution due
to zero-point motion. The results of rece.t calculations of the equa-
tions of state using the above four methods were found to be in good
agreement .among zach other and with other reliable calculations. How-
ever, it was shown that one of the contributions to the total energy,
the correlation energy, is approximately four times larger than the
differences between the highest and the lowest values of the total
energy determined by the four models. The theory of electron correla-
tion is a poorly understood quantum mechanical effect and the numerical
results for the correlation energy of hvdrogen may be in error by a
factor of two or three. Thus, estimates of the transition preasure
may be in error by a few Mbar. Therefore, accurate determinstion of
the correlation energy appears to be the most important problem facing
theoretical calculations of the properties of metallic hydrogen.

3. Metastability

In considering metastability, it is worthwhile to note that,
relative to molecular hydrogen, the energy stored in the metallic
modification is of the order of 2 Mbar/(mole/cm3). Because of this,
constant volume decomposition of metallic hydrogen would result in
temperatures of several thousand degrees K and pressures over 1 Mbar,
This stored energy exceeds by two orders of magnitude the energy
stored in diamond relative to graphite.

Thermodynamic considerations indicate that the melting tempera-
ture of metallic hydrogen should be less than the melting temperature
of molecular hydrogen and that, upon melting, metallic hydrogen should
thus become a molecular liquid. However, it is unlikely that thermo-
dynamic considerations apply to molecular hydrogen, which is a quantum
solid at T ¥ 14 K and a quantum liquid at 14 K < T < 20.4 K.




Stability of the metastable state g determined by calculating
the decay rate irom the less stable to the more stable form. In
general., the decay rate may be slow due to the very comp.icated
nature of the process on the mnlecular level. Thus, the transition
from diamond to graphite (i.e., from the less stablz to the more stable
form) requires complicated rearrangement of the tetrahedrally coordi-
nated carbon atoms to form a widely separated, close-packed structure.
Therefore, carbon can exist in the usual stable form as graphite and,

in the metestable form, as diamond. Unfortunately, the mechanism

responsible for the breakdown of metallic hydrogen 1s very simple,
requiring only that pairs of neighboring atoms link up to form
molecules.

Detailed calcvlations of the cecay rate of metallic hydrogen
have not been rade due to the.complexity of the problem. Howev.r,
approximaie estimates of the time required for metallic hydrogen to
decompose are uvf the order of fractions of a second.

The results of recent investigations indicate that maintaining

metal’.ic hydrogen for long periods of time may involve keeping 1.

tightly enclosed in a vessel at a constant volume and under some
pressure, in order to prevent evaporation and recombination. By 7
keep/ng the demsity constant and high, one can also minimize the j
free energy difference between the two phases, which becomes very
large when the system is allowed to expand freely at constant 4
pressure. However, metastability remains the most crucial aspect

of the problem and will no doubt have to be resolved experimentally.

C. EXPERIMENTAL RESEARCH

The experimental research on molecular hydrogen involves two !
distinct goals: the acquisition of experimental data to determine i
its equation of state #& i the observation of metallic hydrogen. The
methods of determining the experimental and theoretical equations of
state of molecular hydrogen, their reliability, and the results ob-
tained so far were discussed in Section B. Tris section deals only
with attempts to observe metallic hydrogen and with related experimental

investigations.




xi.

Isentropic, including nearly isentropic nultiple-shock compres-
sion, and static isothermal experiments are the only two methods* used
today ir attempting to observe metallic-~phase transition of molecular
hydrogen. Although not yet attempted, laser and electron-beam tech-
niques can also be utilized to compress molecular hydrogen to the very
high densities at which metallic tramsition occurs. However, static
isothermal compression is the only method that would not result in the
destruction of the sample and could produce laboratory samples of

metallic hydrogen.

In the past, isentropic compression has been the only method
capable of generating Mbar pressures sufficient to attain metellic-
phase transition. dawke et al. have performed isentropic compressicn
experiments on mclecular hydrogen using a r;ther sophisticated magnetic
implosion techn.que. Compression of the sample of liquid molecular
hydrogen was determined from the diameter of the magnetically imploded
sample tube measured by means of flash x-rays. The pressure of «he
magnetic field acting on the sample was roughly estimated from a one-
dimensional magnetohydrodyanmic cod!). A wire placed axially in the
sample made it prssible to measure *ne electrical resietivity of the

compressed sampie of hydrogen. Unfortunately, Hawke et al. obtained

only a single approxiiate volume pressure poivit (~2em3 *n0le at 2 to
5 Mbar). Using isentropic compression in the absence of magnetic field, '
Grigor'yev et al. obtained s8ix different equations of state points at

pressures estimated to be between 0.37 and 8 Mbar at calculated moiar

ORI Py TN !

volumes between 4.5 and 1 cm3/mole. These results show that Grigor'yev's
and Hawke's experimental data caa be fitted into an acceptable equation
of state 1f one assumes a transition of molecular hydrogen into a
metallic phase at a pressure of 2.8 Mbar, with a molar volume change

from 1.9 to 1.6 cm3/mole. However, as pointed out by Ross, their data p
can also be fitted by a straight }ine, thus indicating an absence

of metallic transition. The res:lting isentrope must be accepted as

being crude and preliminary and t:e experimental method used will

require further development.

*As a result of the very high temperatures generated by shock
wvaves and the very low density of molecular hydrogen, adiabatic shock-
compression (single and even double shocks) cannot produce the very
high densities required for the metallic~phase trancition of hydrogen.
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Extremely high contact pressurea of up to 4 to 5 Mbar over a
very small surface area of about 10~2 to 10~3 mm? are claimed to have
been generated by Yakovlev and his colleagues, using opposed anvils
made of carbonado, a polycrystalline diamond compact. In these
externally calibrated experiments the indentor, with a rounded
conical tip, was used toc compress a film of a cellulose nitrate
varnish deposited onto a flat anvil. However, recent calculations
by Ruoff and Chan show that, because of the shape of the indentor
used in the experiments, the actual pressure achieved at the maximum
upplied load of 200 kg was about 1 Mbar. Taking intc account other
factors, such as plastic flow, could reduce even this estimate
substantially.

A significant achievement in atatic high pressure research,
especially from the point of view of production of metallic hydrogen,
is the construction of the segmented sphere apparatus by Kawai.,
Unlike the opposed anvils device where cnly contact pressure is
generated over s very small area, the segmented spnere can be used
*o g.nerate high pressures in "faivly large'" sample volume. First
developed by Von Piatten and used by him to synthesize diamond, the
segmented sphere has been perfected to the point where it is claimed
that p-.2ssures up to approximately 2.5 Mbar are generated in an approx-
imately 1 mm3 sample volume, without the onset of plastic flow. Con-
ceivably, the use of higher.strength materials, such as carbonado
developed by Yakovlev or diamond compact developed by Wentorf, in the
sample chamber and other inner sections of the sphere may further
extend the pressures that can be generated.

The claim of pressures up to 2.5 Mbar achieved in the segmented
sphere appear to be overly exaggerated. In Kawal's experiments, the
pressure generated 1s calculated by multiplying the external hydro-
static load by the ratio of the external area of the sphere with its
internal area. The calculations are based on the assumption that
the pressure is transmitted with a 100 percent efficiency. In practice,
as a result of friction, deformation, and a number of other factors,

the actual efficiency may be only a small fraction of its ideal value.
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Yakovlev's and Kawai's groups have performad a series of
experiments in which even such wide-gap insulators as diamond,

S102, NaCl, S, MgO, water (ice), BN, and Al;03 became electrical
conductors at pressures estimated to exceed 1 Mbar. While the
actual transiticn pressures are unknown, these experiments further
subatantiate the theoretical prediction that, at sufficiently high
pressures, all insulators, including hydrogen, should become con-
ductors. 1ln the latest experiments by Yakovlev et al. and Kawai et
al., a 6 to 8 order decrease in electrical resiativity of hydrogen
was interpreted as a possible transition of molecular hydrogen into
its metallic phase. The Russian experiments were pexformed usiug
opposed carbonado anvils, with a thin film of scilid molecular hydro-
gen deposited on the surface of the flat carbonado anvil coocled to
4,2 K. The Japanese used a room-temperature segmented sphere
charged with hydrogen gas. Metallic hydrogen, if it actu4lly was
produced, was not metastable.

Explanations other than metallic transition can account for the
experimentally observed decrease in the electrical resistivity of
hydrogen claimed or implied to have occurred at pressures of less
than or approximately 1 Mbar. One of the most intriguing explanations
is baused on the very recently proposed concept of the molecular-
insulsting phase becoming & molecular-conducting phase due to nar-
rowing and possible closing of the band gap. If this tramsition
does indeed occur, it takes place at lower pressures than the metallic-
phase transition and may have been reached in both the Russian and
Japanese experiments.

Since external rather than internal calitretion was used, the
high pressures claimed to have been generated in Yakovlev's and
Kawai's experiments were met with considerable skepticism, However,
Mbar pressures were also claimed to have been generated in internally
calibrated experiments performed in 1975 by Mao and Bell of the
Carnegie Institution., The djiamond pressure cell used in the experi-
ments consisted of two opposed anvils made of single-crystal diamonds
with the work area of each anvil equal to 1.5 x 10-3 mn?, very care-
fully aligned both axially and horizontally. A ruby crystal was
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placed on a 0.0l-inch thick sheet of steel and compressed between
the anvils. The pressure was determined from the spectral shift
of the R} ruby fluorescence line with pressure. In more recent
experiments, Mao and Bell claim to have reached 1.3 Mbar on the ruby
scale. The support for the diamond anvil then failed, causing the
diamond to break. Thus, it appears that even higher pressures may
be attained in the future.

The ruby fluorescence gauge used in determining pressures above
291 kbar is a secondary gauge and is a linear extension of the National
Bureau of Standards calibration curve based on Decker's central force
equation of state for sodium chloride. According to Decker's equation
of state, the Bl to B2 transition in NaCl occurs at a pressure of
291 kbar. Ruoff and Chhabildas have recently shown that the central
force model is invalid. According to these authors, the Bl to B2
transition in NaCl at room temperature occurs at a pressure of 261
kbar. Assuming validity of their arguments, the pressures achieved
by Mao and Bell are well below 1 Mbar. Mao and Bell also disregard
a possibly significant nonlinearity of the temperature dependence of
the spectral shift of the R; ruby fluorescence line excited by the
laser beam.

Vereshchagin claims that static pressures up to 3 Miar in a volume

of several cm3

could be generated during the next few years by a Soviet
group in a 50,000-ton press with the inner stage made of carbonado.
Pressures limited only by the strength of the material of which inner
anvils are made can also be generated in the 22~inch diameter, room-
temperature segmented sphere developed by Dr. Ruoff at Cornell

University.

D, POSSIBLE OPTIONS

Several options are available to speed up the search for and de-

velopment of metallic hydrogen. wui.e of these is the construction of
a segmented sphere apparatus, such as tlie one used by Kawai. This
option 18 being pursued by two different groups in the United States.
The NASA Lewis Research Center in Cleveland has an operational 6-inch

dlameter, room-tamperature segmen:ed sphere apparatus. A 12-inch

i
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diamete., cryogenic segmented sphere is in planning stages and 1s
expected to he constructed in a few years. However, material pro-
curement difficulties may result in cancellation of its construction.
Dr. Ruoff at Cornell Univotlity is performing calibration tests con
a 22-inch diameter, room-temperature segmented sphere,

There are currently two schools of thought concerning claims
of Mbar pressures supposedly achieved in static high-pressure exper-
iments. One group of high pressure specialists believes thet pres-
sures in excass of 1 Ytar have buen generated in Kawai's segmented
sphere and that 5 Mbar pressures claimed by Vereshchagin and pressure
of 1 Mbar supposedly achievad by Mao and Bell are nct too unrasasonable.

If one accepts the validity of these claims, multi-Mbar pressures in

a volume sufficiently large to produce met:ilic hydrogen can be gener-
ated in the Russian 50,000-ton press presently under construction and
in Ruoff's 22-inch diameter segmented sphere. However, another group
of materials scientists and high pressure specialists, which includes
such prominent researchers as Ruoff, Bundy, and Wentorf, is firmly
convinced that static pressures above 1 Mbar cannot be achieved due

to materisl limitations in respect to plastic flow and fracture. The
difference in opinion is difficult to resolve and will probably require
establishing a reliable pressure gauge to several Mbar. The availabil-
ity of such a calibration surve would immensely enhance both static

and dynamic experiments done at extremely high pressures.

The development of high-strength materials, such as carbonado,
which can be produced in different shapes, and a search for alternate :
methods of producing diamond compact, which apparently is superior to i
carbonado but i8 expensive and can only be produced in a thin film of
fairly simple geometry, would be another important step. }

At the present time, no theoreticsl analysis exista to explain
the extremely high pressures reached in a segmented-sphere apparatus i

and, thus, to explain the capability of conventional construction

materials to withstand such pressures without deformation. Therefore,
it would be desirable to apply the three-dimensional elastic-plastic
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! code, such as the one developed at the Lawrence Livermore Laboratory,
to analysis of the segmented-sphere apparatus and to designing an
ultimate stacic high pressure press.

Another option would be to concentrate the research on (1) an
attempt to experimentally observe transition into metallic state, and
(2) a thorcugh and eystematic development of theory backed up by
sufficient exparimental data.

The experimental effort to observe metallic transition could be

aclkieved by means of: (a) isentropic shcck-vwave compression, ecpe-
cially magnetic implosion, and the developmen: of an alternative that
uses explosives only (normagnetic) end, possibly, (b) laser compres-
sion. Any such experimental program should be preceded by a complete
study using computer codes. The theoretical approach should deal
with the following problems:

1. Analysis of metastability (including the possihility that
metallic hydrogen may be a quantum liquid).

2, Improved molecular hydrogen equation of state by:

&. calculation of the equation of state by treating the {
entire crystal by band theoretical methods;

b, theoretical analysis of additional improved shock-wave
experiments to determine the effective molecular
potential;* and

¢. calculation of higher order t..ms in the potential of
molecular hydrogen. '

3. Improved calculation of the correlation energy for the
metallic equation of state.
4. Study of the band structure in hydrogen and the possibility

that the molecular solid could become conducting due to the i

conduction band overlap.

*Such experiments have just been funded and will begin in Lawrence i
Livermore Laboratory in FY 1977, It is expected that the accuracy of .
the new experimental data will be improved by a factor of three (to
t 3 percent) over the earlier data.
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Calculation of the molecular equation of state shculd include an
investigation of effects, such as dissociation of molecular hydrogen
in shock waves, the effect of spherical averaging of molecules, the
adequacy of llquid models, and, possibly, quantum mechanical calcula-

tions of many body effects.
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I. EQUATION OF STATE OF DENSE MOLECULAR HYDROGEN

A. GENERAL

As a result of the great interest in determining the metallic
hydrogen transition pressure, considerable attention has been devoted
to calculating the equation of state of molecular hydrogen at high
pressures.

In principle, it should be possible to use the well-estabtlished

methods of quantum mechanics to calculate the forces acting between

hydroger: molecules and then to apply statistical mechanics to calculate
the thermodynamic properties of molecular hydrogen. Thus, the problem
naturally divides into two parts, neither one of which can, in practice,
be solved exactly. Fortunately, the approximate determination of
thermodynamic properties by means of modeling of material properties
with statistical mechanics has made great strides in the past ten

years and the available solutions are sufficiently accurate. However,

the determination of forces hetween moiecules is the principal obstacle

and represents the chief area of current uncertainty. As an alterrative
to theoretical rigor, it is possible to bypass the first principles of
quantum mechanical calculations and, instead, to search for an effec-
tive intermolecular potential that, when used with satisfactory
statistical mechanical models, will reproduce the available experi-
mental data. This empirical pair potential and the statistical !
mechanical models can then be used to determine the thermodynamic
properties. A practical difficulty with this procedure i1s that it 1

breaks down and fails to predict reliably when extrapolating outside i
the range of the data to which the potential was calibrated. An illustra-
tion of this kind of difficulty is found in earlier work on calculations :
of the solid isotherm of hydrogen using pair potentials that had been %
obtained from second virial coefficients of low-density gas. These

pair potentials failed to predict the properties of the solid at

pressures up to 20 kbar originally measured by Stewart in 1956 [1].

The agreement was 80 poor as to cast some doubt on the accuracy of

the experimental data. However, the more recent work of Anderson and




Swenson [2], repeating and extending u; to a |~essur( of 25 kbar the
earlier data by Stewart, had verified its .ccuracy.

These persistent attempts to calculate the properties of hydrogen
despite an inadequate potential (or, perhaps, because of it) resulted
in very careful theoretical modeling of the quantum solid, particularly
by Krumhansl and coworkers at Cornell University (3,4,5]. Consequently,
this aspect of the problem was solved when better theoretical pair
potential becama available. At about the same time, Ross at the
r.awrence Livermore Laboratory {6,7) and Etters and co-workers [8,9,10]
at Colorado State University, showed that calculations using
potentials that correctly describe the repulsive forces that are the
important terms in the potential at high pressure would satisfactorily
predict the experimental data. The work of these three groups repre-
sents the most recent and, probably, the most complete theoretical
studies of the properties of dense moiecular hydrogen. C{onsequently,
this section will focus mostly on their work. These scientists hold
somevhat different views as to the significance of some of the terms
in their model pair potentials. However, their final results are
sufficiently close to indicate that an adequate equation of state for
molecular hydrogen at near metallic densities may soon become available.

B. INTERACTION POTENTIAL FOR HYDROGEN MOLECULES
The simplest procedure used to calculate the properties of a

molecular solid or liquid is to assume that the total force on a
molecule is obtained by adding all the forces due to neighboring
molecules. The assumption of pairwise additivity means that the
behavior of a molecular system is characterized by a many-body

potential of the form:

VeI gy s ¥
1<J

where ¢ij 1s the molecular potential acting between pairs i and § and

may be the interaction potential for an isolated system of twc
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molecules, or the effective potential between pairs of molecules,
modified by the presence of additional neightors. Eq. (1) is used
in statistical mechanics to compute the thermndynamic properties.

i Accurate calculations can be carried out for the pair potential

in the limit of iarge intermolecular separatjons (R), where the irter-

( actions are due to the induced dipoie-dipole, induced dipole-quadrapole,
' and quadrapole~quadrapole potentials. The theory of these long-rauge
interactions for hydrogen is well understood and discussed 1irn some

detail by Margenau and Kestner [11]. In the intermediate region nea:c
the potential minimum, gb initio calculations are not yet satisfactory
and no attempts have been made to use the available results in equaticn
of state calculations. In this region, the ab initio molecular orbital
calculations require extremely large basis sets ot orbitals to obtain
satisfactory convergence.

The calculated properties of molecular hydrogen at megabar
pressures are very sensitive to the pair potential at small separa-
tions, Therefore, the region of primary importance to the determi-
nation of the very high pressure equation of state is the calculation
of the steeply rapulsive ghort-range interaction between hydroger:
molecules. Fortunately, theoretical calculation of the pair potential
from first principles at small intermolecular separarions (R < 5 bohr)
is much more favorable than at intermediate separations. At short
intermolecular distances, the attractive terms are considerably less
important and sufficiently large basis sets of orbitals can be used
in calculations that converge in reasonable computing time to deter-

mine the pair potential. An exhaustive review by McMahan exr al. [12]

of the calculations of the short~range interaction between hydrogen

molecules has shown that recent computations of the pair potential

at small separations by the configuration interaction (CI) method

are correct to within better than 10 percent. They have also con-
cluded that the intermolecular pair potential for hydrogen molecules
for short separations caiculated by ab initio techniques is expected
to include all contributions to the interaction energy, including
attraction. In other words, there is little to be gained from

further calculations of a system of two interacting hydrogen molecules

at small separations.
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In the case of molecular hydrogen, the pair potential 1is equal
to the pair poteatial energy (EAB) of two hydrogen molecules (A and B).
The pair potential energy is usually calculated by taking the differ-

ence between the total ground-state energy (E,..) of the composite

A+B

Hy - Hy system at geometries of interest and the energy EA and EB
(EA = EB) of two infinitely separated Hy molecules evaluatec in the

same approximation:

AB A+B ~ “Fa° (2)

Computation of the energy of a hydrogen molecule is straigthforward.
Thus, the main problem in calculating the intermolecular pair poten-

tial of hydrogen is the computation of E ,» the ground~state energy

A+B
of the Hp - Hy system,

The energy EA+B’ at small separations required to compute the
properties of molecular hydrogen at megabar pressures, is usually
calrulated by the present state-of-the-art ab initio techniques.

In this approach, all four hydrogen nuclei are fixed at given posi
tion: (Born-Oppenheimer approximation) and the zero-point motion

cf the four nuclei is neglected. The nuclear position vectors, ﬁA’
and, thus, the geometry of the system are accordingly parameters in
the problem. The ground-state cnergy of two interacting hydrogen

molecules is then thz ground-~state eigenvalue of the Hamiltonian:

1 1 1
H= ¥ =—+ Y (-5v.2. % + ¥ (3)
A<B Rap 7 < 274 T g or, Fo

where the indices A and ©7 run over the four nuclei and four electrons,
- - - . *
respectively, RAB = ‘RA - RBI, Pop ™ |ri - ﬁAl’ and atomic units are
used.
Because variational methods are generally used, they provide

upper bounds for the ground-state energy. These methods may be

* o

In the atomic units e? = 1, h = 1, and me = 1. The unit of
length 1s the bohr (1 bohr = 0.5292 A°) and the unit of energy is
the hartree (1 hartree = 27.21 eV = 0.3158°105 k).




categorized according to the generality of the trial wave function

used in the calculation. The three most frequently used methods

are the Heitler-~London (HL), the Hartree-Fock self-consistent field

(HF), and (limited or full) configuration interaction (CI) calculations.
The full CI wave function represents the most complete basis

set, including as special cases both the HF and HL, and, obviously,

the limited CI wave functions, and always yields lower upper bounds

on the ground-state energy than either HF or HL. The full CI cal-

culations also include all electron correlations and, thus, both the
purely repulsive energy and the dispersion (van der Waals) energy,
which is not calculated in the HF method. However, the CI and HF
results converge at very small separations, when the dispersion

terms become negligible. At larger separations, when the dispersion
energy becomes appreciable, the number of terms in a CI calculation
becomes piruhibitively high for computer calculatiouns. A more detailed
discussion of the molecular orbital methods 1s beyond the scope of

this survey.

A recent ab initio calculation of the Hy - Hp intermolecular :
potential, 1llustrating the CI method and in agreement with the best E
available results, is that of Ree and Bender [13]. The Hamiltonian
used, Eq. (3), is that for a "super-molecule" composed of four Ht
nuclei and four electrons. The wave function is expanded in a linear
combination of Slater determinants., Elements in the determimnants
are the molecular orbitals, which are, in turn, expressed as a suitable
linear combination of atomic orbitals of the hydrogen atom. The ?
coefficients in the expansion are obtained by minimizing the energy
in the Schroedinger equation. The resulting eaergy must approach the

exact ground-state energy of a system of two hydrogen molecules, pro-

vided thai a sufficiently large number of atomic orbitals and Slater '
determinants are used in the calculations. The computations for the i
ground-state energles were carried out by the CI method using the :
iterative natural-orbital method developed by Davidson and Bender ([14]. i
The CI wave functions used to calculate the energies include the HF

configuration plus all configurations arising from the replacement

o an " . . . , ‘ — " J— v "‘



of, at most, two molecular orbitals consisting of five (two 1ls and

one set of 2p [px, P., pz]) atomic orbitals per hydrogen atom. The

accuracy of the cachlated results was tested using a more precise
wave function constructed from more than 3000 Slater determinants
and 44 molecular orbitals. Most of the calculations were made for
H-H bond length (intramolecular separation) of 1.4 bohr.

The intermolecular potential energy, EAB’ was calculated from
Eq. (2). Four geometries were considered: (1) L-geometry, where
m- lecular axes of both hydrogen atoms lie along a straight line, R,
connecting the centers of the molecules; (2) P-geometry, where
molecular axes are parallel to each other and perpendicular to R;

(3) T-geometry, where one axis i1s perpendicular to R and the other
is parallel to it; and (4) X-geometry, where botl axes are perpen-
dicular to each other and to R.

Figure 1 shows the rotational barriers at intermolecular distances
that two Hy molecules must overcome to change their spatial arrangement
from one form to another. It can be seen from this ifigure that, at
R = 3 bohr, which approximately corresponds to the highest temperature

(= 7000 K) achieved in the Hugoniot experiments, the highest rotational
barrier corresponding to the L+>T rotation occurs at a temperature of

about 873 K. These rotational barriers are relatively small compared
with the 7000 K achieved in the Hugoniot experiments. Assuming that
all molecular orientations can be classified into four geometries
(L,T,?,X), only 11 percent, or the smallest number of H; molecules,
have the L-geometry. Since the states with the L-geometry are
energetically least favorable, the probability of two H; molecules
being in the L-geometry at short intermolecular distances 1is even
smaller. At short intermolecular distances, the H-H bond length will
readjust itself so as to iower the total energy. The energy-lowering
by bond shrinkage 18 largest for the H; molecule having L-geometry.

A 6 percent contraction of the H-H bond was calculated to result in

a 5 percent lowering of the pair potential energy, E It can be

AB.
seen from the dashed line in Fig. 1 that contraction of the H-H bond
will result in a slight reduction of the L++T rotational barrier,
Thi. leads to the conclusion that the molecules are mostly freely

rotating at intermolecular distances of approximately 3 bonr,
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Figure 2 shows the spherically averaged intermolecular potential
energies as a function of the intermolecular separation R obtained
from the HF and CI calculations (curves 1 and 2, respectively). It
should be noted that the interaction potential energy is not very
sensitive to the averaging procedure used, because the intermolecular
potential energies for the T, X, and P geometries are close to each
other and the L-geometry, the most repulsive, has the smallest weight
(1/9). Curve 3 in Fig. 2 is a plot of the intermc:zcular potential
energy vs the intermolecular separation determined from CI calculation,

which gives the lowest energy at a given R. (Botl the H-L bond length

and rotations of the H; axes relative to R were varied to obtain the
ninimun energy trajectory for two hydrogen molecules.)

For convenience, at 2 < R < 5 bohr, the spherically averaged HF
and CI intermolecular pair potentials (curves 1 and 2, respectively)

car be expressed in analytical form:

d@R) = 7.0e ~1:65 R (HF potential) (4)
and
d®R) = 7.5 e ~1:-69 R, (C1 potential) (5)

It can be seen from Fig. 2 that, at small intermolecular separations
(R = 2-5 bohr), CI calculations result in energies that are about 10
percent lower than energies determined from HF calculations. This is
easlly explained by the fact that the HF calculations do not include
dispersion effects due to exclusion of the electron-electron correla-
tion terms needed to simulate the induced dipole-dipole interaction
of the van der Waals forces, These terms are included in the CIl
calculations at the price of very large sums of determinants. The
discrepancy should increase at larger separations where HF results
fall off too slowly because they do not contaln attractive terms,
Although the CI method is still applicable in principle for R > 5 bohr,
it becomes impractical because of the large number of determinants

required to accurately compute the higher order attractive terms,
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Having determined the pair potential of two hydrogen molecules
by means of quantum mechanical methods, the next step is to check
the validity of these theoretical potentials by calculating the

thermodynamic properties of molecular hydrogen.

C. EQUATION OF STATE FOR SOLID HYDROGEN

1. Theory of the Quantum Solid

de Boer and Blaisse [15] were among the earliest workers to
point out that, in solidified hydrogen and helium, the small masses
and weak interactions would lead to large de Broglie wavelengths
and significant quantum effects. For these substances, the zero-
point motion is sufficiently large so that neither classical nor
harmonic approximation is applicable at very low pressures., The
lattice properties of these substances, raferred to as ''quantum
solids,"” must be calculated by quantum mechanical many-body theory.

For a system of particles interacting via two body forces, the

Hamiltonian is:

1 2 ¢
= - = Vs + ’
H 2m zi: i iz:<j i3 (6)

where the second sum on the right~hand side is the same as that in
Eq. (1). Because of the localized nature of molecules in a solid,
contributions to the pressure and energy due to exchange will be
extremely small. Thereiore, unsymmetrized Hartree~like wave function
provides a satisfactory representation of the system.

A widely used approximation for the trial wave function of

this sysiem is the correlated variational function [16]:

N N
¢ = I ¥(r,) n f(r,), (7
ga1 ok I

where W(fi) = W(;i-ii) are single particle functions localized about
the equilibrium lattice sites ﬁi’ and f 18 a two-body correlation

function used to prevent neighbors from coming unrealistically close
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to each other. When dealing with the ground-state energies, an
upproximate choice for ¥ is the simple normalized Gaussian ¥ = (8/m)3/4
exp [—(B/Z)‘(;-ﬁ)z], where B 1s a variational parameter. The correct
two-body correlation function must, near the origin, have the form
f = exp[(-1/2)(k/r)5]. Consequently, this form is generally used as
the correlation function, with k treated as a variational parameter.
It should be emphasized that Eqs. (6) and (7), which represent

the basic theory for calculating the equation of state of ''quantum
solids,” are only approximations. The evaluation of the total energy
and its derivativee requires the evaluation of terms such as
E -./WHWd?i...dEN, necassitating the calculation of a large number
of multicentered integrals. Since an exact solution of these equations
involves considerable labor, various approximate calculations have
been made. In one of the earliest such computations, Bernardes [17]
used a damped sine function with a variational parameter for VY,
instead of the Gaussian. He permitted no overlap of neighboring
molecular wave functions, thus defining an effective correlation
function. Hurst and Levelt [18] used a quantum mechanical version

the Lennard~Jones-Devonshire cell model. In this model, an atom
. 3 in the potential field of stationary neighbors and 1is restricted
e Wigner-Seitz sphere defined by the molar volume. The wave func-
tion, required to v.nish at the cell boundary again implicitly defining
f, 1c calculated numerically. Subsequent workers, such as Saunders
[{16) Nosanow and Shaw [19], and Mullin [20], explicitly included f
in v.e correlation function. However, in order to reduce the problem
to a tractable form, they neglect the three and higher centered integrals.
This is done formally by the cluster expansion method, in which the
grounu—-state energy is expanded in a series of terms of the many-
centered correlations (clusters) and the series is truncated to
exclude all but the two center terms. In the cluster expansion method,

the energy can be written:

2 -1 X - -
E = -—-—32'3 B, <¢|¢> )‘;k‘/.‘!‘z(r)‘)\lfz(rk)fz(rkk)¢(r)\k)0(r)\,rk)dr)‘dt‘k. (8)
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where ¢(r) = V(r)-(h%/2m)v21nf (r) and G is the series expansion.
Inclusion of only two center terms 1is equivalent to setting G = 1.

T their more recent work, Etters and Danilowicz [21] have attempted
to approximate the effect of triple correlations. The most complete
and, in principle, exact solutions of Eqs. (6) and (7) are obtained
by the Monte Carlo (MC) method [22]. In the MC method, a few hundred
particles are placed in a cell having periodic boundary conditions.
The particles are moved according to certain prescribed rules and

the energy and position are recorded for each move. The Markov

chain made up of these steps provides the MC integration over the
3N coordinates needed to evaluate the total energy and pressure
for the particular set of variational parameters. To determine the
minimum energy, these calculations must be repeated for a family
of such parameters. An enlightening application of this method to
solid helium is given by Hansen and Levesque [23] and its application
to hydrogen, by Bruce [d].

A limitation of the MC method is the restriction to a finite

number of particles and the large amount of required computer time.

Consequently, the MC method is not suited for a systematic study
involving a large number of different pair potentials. However, ﬂ
since it is an exact calculation, it is well suited to undertake a i
systematic inspection of approximate theories using a well-defined
pair potential. Such a study was undertaken and completed in 1972

by a group of workers at Cornell University under the direction of
Krumhansl [3,4,5]. These workers carried out MC calculations on
solid hydrogen using the Lennard-Jones and exponential-six potentials.
The MC results obtained were found to be in good agreement with

calculations employing a variation wave function and limited to two

center clusters. These results are constantly being used in more
recent tests of the approximate theories. More importantly from
the point of view of this study 1s their discovery that a purely
harmonic single-particle model, in which the characteristic Debye

frequency 1s computed from the force constant, is a valid model for

hydrogen at pressures above 1 kbar. These resuits apply to spherically
symmetric pair potentials. This result has lead to a considerable
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simplification of the theoretical procedure and the labor required

for high-pressure molecular hydrogen calculations.

2, High-Pressure Hydrogen Calculations

Unfortunately, although Krumhansl and co-workers carried out a
very systematic study on solid molecular hydrogen, they used an
empirical potential obtained from analysis of low-density gas data,
which are insufficiently sensitive to the repulsive forces that
dominate the high-density solid properties. Consequently, their
predicted isotherms were in poor agreement with the static data to
20 kbar by Stewart [1]. In 1970, Ross [24], aware of this shortcoming
of the gas data, had used a semi-empirical exponential-six pair poten-
tial to calculate the properties of hydrogen. In this potential, the
exponential parameter (a = 11.5) was taken from the molecular orbital
theor; and the well depth was adjusted to agree with those typically
obtained from the second virial coefficient (e/k ~ 33 K). This
potential was then used to predict correctly the 40 kbar shock data
of Van Thiel and Alder [26] as well as the static data to 20 kbar.

An analysis of these and the more recent shock data, in terms of the
pair potential. is presented in Section 1, subsection D.

As noted earlier, the attractive terms in the pair potential
of a molecular solid or liquid at very large intermolecular separations
are well known and the theoretically calculated, steeply repulsive,
short-range interaction terms at small separations are available.
However, no truly ab initio method exists for the intermed‘ate region,
which includes the potential minimum. Consequently, a theoretician
attempting to compute the properties of molecular hydrogen using a
pair potential available in the literature faces a decision in select-
ing the range of intermolecular separations and: thus, the density
and pressure regions for which the calculations are to be made. It
will thus be illustrative to compare the approach to this problem taken
by Ross [6,7] with that by Etters et al. [9,10]. Ross was primarily
interested in analyzing the high-density liquid hydrogen shock wave
data at pressures from 50 to 900 kbar and temperatures from 1300 to

7000 K attained at the Lawrence Livermore Laboratory. It can be

= N RPN~ .
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seen from the pair potential curve that, over this temperature range,
the largest contributions to the pressure and energy of hydrogen will
necessarily come from the intermolecular interactions at separations
below 5 bohr. Thus, for the interpretation of the shock data, the
available pair potential computed by the CI method for R < 5 bohr and
spherically averaged over four different orientations should be correct.
However, Etters et al. were primarily interested in caiculating the
properties of solid hydrogen at a temperature of 4 K and pressures be-
low 25 kbar and the second virial coefficient. In this case, the
correct function to choose for a pair potential is much less obvious
because the significant region of intermolecular separation covered

by these properties includes the intermediate region that cannot be
directly computed by the current ab initio techniques. Etters et al.
chose the results of the HF calculations, which omit the attractive
contributions that are included in CI as their short-range potential.
They then added the attractive multipole terms rigorously correct at

large R to the short-range potential. Since the long-range attractive

terms (~1/r™) must go to zero at small R, an exponential scaling
function similar to that proposed by Trubitsyn [25] was used to reduce
the attractive terms from full contributions to zero contributions in

the region between R = 4.5 and 2.5 bohr. Below R = 2,5 bohr, the

i .

total potential is purely HF. All of these contributions were also
spherically averaged over the available orientations. Thus, the
potential obtained would span the full range of R.

The spherically averaged pair potential UT(r) derived by

Etters et al. can be represented by the following expression:

- -1
ﬁT(r) - ﬁR(r) - U,(r) x [1»+ GXP[-4(r-3-5)]] , (9)

where ﬁR(r) is the repulsive energy averaged over four orientations and ;
ﬁA(r) is the orientation-averaged attractive energy. The exponential :
term ensures that attraction obeys the proper limits. These authors

then used the correlation cluster expansion method, Eq. (8), in which

G # 1, but included the next higher order correlation. They had
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previously shown that this model would provide xood agreement with
the MC results, The resilts of their pressure vs volume calculations
for solid molecular hvdvogen, shown in Fig. 3, are in good agreement
with the ita.

This and most other studies assume the potential to be spherically
symnetric despite the diatomic structure of molecular hydrogen, thus
neglecting the effect of anisotropy. The error introduced by neglecting
anisotropy was investigatea by Raich and Etters [8], who have made
ground-state energy calculations for hydrogen molecules retaining the
orlentation dependence of the pair potential. It was found that the
molecule continued to rotate freely up to a pressure of about 300 kbar.

Above this pressure, the molecules no longer rotate, but vibrate about

the equilibrium orientations. The authors show this loss of freedom

to be sudden and accompanied by a small (5 percent) decrease in

pressure and energy.

In addition to calculating solid properties, Etters et al, [9]
have also shown that the same pair potential yields satisfactory re-
sults for the second virial coefficient B(T) over the temperature raage’
of 60 to 523 K. They were also able to show that B(T), calculated from

either a spherically averaged potential or a fuily anisotropic represen-

tation, leads to nearly identical results, indicating that the anisot-
ropies contribute little to B(T). Thei: calculations included the

e b i

first two quantum corrections to the translational and rotational

motions.

The work of Etters et al. appears to be the only one in which the ]
second virial coefficient and the solid isotherm are correctly predicted §
to a pressure of at least 25 kbar. These workers have also attempted
to compare their results with the Van Thiel and Alder [26] shock com-
pression work. Unfortunately, they appear to have compared their low- i
temperature isotherm directly with the Huponiot, thus omitting the
large thermal contributions that would have approximately doubled
theilr pressures and resulted in the predicted Hugoniot being much too
stiff.




rm—»i o e A A

16

P,kbar

4
0 1 A A i N Q-
9 " 13 15 17 19 7N 23

V,cm3/mole

Fig. 3--The pressure vs molar volume curves at zero temperature
for solid molecular hydrogen [9].

------ calculated using the 6-12 potential

calculated using the EERD potential
O - experimental data obtained by Anderson & Swenson
O - experimental data obtained by Stewart

More recently, Anderson et al. [10] used the self-consistent
phonon approximation (SCPA) to calculate the pressure vs volume
curve for solid molecular hydrogen at zero temperature. In these
calculations, they used the pair potential proposed by Etters et
al. [9] (EERD potential) and the potential defermined by Ross from
the shock wave and solid high-pressure data (Russ, or CI + ATT
potential). The results obtained are shown in Fig. 4, where they

are compared with the experimental data. The calculations
appear to show that, at pressures above a few kbar, the two
potentials are comparable and in good agreement for both sets

of data. Calculation of the bulk modulus by Anderson et al. [10]
indicates that the Ross potential may be too soft at the highest

pressures. However, at lower pressures (below 2 kbar), the EERD
potential predicts properties that are in better agreement with

experimental data. As Anderson et a.. [10] observe, "{it is not

et ,A,M—MAM‘-J
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Fig. 4~-The pressure vs relative volume curves at zero temperature
for solid molecular hydrogen and deuterium [10].

calculated using the EERD potential

—————— calculated using the Ross potential

O - experimental data obtained by Anderson & Swenson
O - experimental data obtained by Stewart
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surprising since the Ross potential was in fact designed for inves-
tigation of the very high pressures of hydrogen in the neighborhood
of the metal-insulator transition, and is not concerned with pressures

below 2 kbar in the quantuﬁ solid region."

D. SHOCK-COMPRESSED MOLECULAR HYDROGEN AND DEUTERIUM

1. Theory of the Dernse Fluid

In recent years, enormous progress has been made in the statis-
tical mechanical theory of fluids, so that, at the present time, it
is possible to accurately compute the properties of simple fluids if
their pair poﬁentials ar ' w.n. T.j- favorable state of affairs is
the result of the extensive MC and 1 »lecular dynamics calculations of
the properties of classical solids an¢ fluids, carried out in the
late 1950s and 1960s at Los .Alamos uud Livermore Laboratories. These
calculations are, in fact, "computer experiments' and require large
anounts of computer time.

One important result of the computer calculations was to provide
the "experimental" data to build approximate models of fluids based
on the hard-sphere perturbation theory originaily proposed by Barker
and Henderson [27,28] and improved and modified by a number of workers,
including Mansoori and Canfield [29]. Ross [3C] has applied a version
of the latter model to compute to within * 1 percent the fluid properties
using a wide range of pair potentials, including the Lennard-Jones,
exponential-six, inverse-12, inverse~9, inverse-6, and screened Coulomb
potential for plasma. Ross has also used this model for calculations
of 1liquid argon shock compressed to 900 kbar [31].

In the only two shock-wave studies of hydrogen and deuterium
performed so far [26,32], they are initially in the liquid state
at 20 K. Since the temperatures reached are well above the melting
temperature, the final state is a compressed fluid. As a result,
the shock Hugoniots were computed using hard-sphere fluid perturbvation
theory.

In the hard-sphere perturbation theory, it is assumed that atoms

1r a2 veal 1liquid are arranged as in a hard-sphere liquid, and interact
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via a realistic intermolecular potential. The hard-sphere pair distri~
bution function is known analytically and the hard-sphere diameter
is determined by miunimizing the Helmholtz free energy given by the

following expression:

F,(d,V) % F
F __07 21N 23n _ vV int
R f¢(R)g(R/d)R dR 1n<——A3N> 1+ WeT (10)

d

where Fo(d,V) is the configurational free energy of hard spheres of

diameter d at a volume V and temperature T, $(R) is the spherically-
symmetric jntermolecular potential, g(R/d) is the hard-sphere energy
of the internal degrees of freedom, A = (h2/2ﬂka)1/2, and other sym-

bols have their usual meaning. For a diatomic molecule,

F
int _ T ~hv/kT hv 1-a
NkT In ZOR + 1n<1 - & >+<2— - Do xT | T lnqe - lnqu, (11

where OR is the rotational temperature, v is the diatomic vibrational

frequency, D0 - hv/2 is the dissociation energy, a is the degree of

dissociation (number of moles dissociated), qe is the electronic
partition function, and 9 r is the effective contribution to the
rotation-vibration partition function resulting from the coupling
of these two degrees of freedom and from anharmonicity of the
vibrator. ¢

It |s assumed that v aud D éye independent of volume and that
the molecules rotate freely. It can be shown that these approxima-
tions and the¢: effect of nonsphericity are much smaller than the
experimental error in determining Hugonict points from the shock-
wave data. The theoretical pair potentials aie¢ used in Eq. (10),
and, therefore, the Heimholtz free energy, F, is obtained by mini-
mizing F (i.e., from t',~ condition 3F/3d = 0). 'The thermodynamic )

properties are computed by taking proper derivatives of the minimired

free energy.

2. Hugoniot Calculations

The theoretical Hugoniot curve is determined from the relationship:

E=E + (P + Po)(Vo -V/2, (12)
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where E, P, and V are the energy, pressure, and volume, respectively,
of the compressed state, and the subscript o refers to the initial
state. In practice, the Hugoniot is calculated by choosing a temper-
ature; calculating the Hugoniot function HUG = (E - Eo) - (P + Po)x
(VO-V)/2 along an isotherm; and finding the E, P, V such that HUG = 0.
The Hugoniots curves of liquid molecular hydrogen calculated
using the HF and CI intermolecular pair potentials given by Eqs. (4)
and (5) are plotted in Figs. 5 and 6 (curves 1 and 2), respectively.
The reflected portion of the Hugoniot was calculated using P, V, and
E achieved during the first shock as the initial conditions--i.e., as
Po’ Vo’ and E0 for the second shock. The computed Hugoniots show
that the HF and CI potentials given by Eqs. (4) and (5) are too stiff

and that attractive terms must be added in order to obtain agreement

with the experimental shock-wave data. The effective pair potentials
obtained by adding two attractive terms (ATT) multiplied by a damping
factor to Eqs. (4) and (5) are as follows:

. 6
@(R) = 7.0e~1-65% - (13/R® + 116/R8)e~“V0/R° (HF + ATT potential) (13}
. and
6
P(R) = 7.5e71-69R _ (13/R6 + 116/R8)e~400/R°  (CI 4 ATT pocential). (14)

L]
The inverse sixth-power attractive term was determined from an analysis

of the experimental oscillator strengths and the inverse eighth power
term, from theoretical calculations. The attractive terms are multi-
plied by the damping factor suggested by Trubitsyn [25] on theoretical
grounds. Addition of the ‘Jamping term makes the attractive terms go

to zero 'at a short range, preventing them from L’coming unrealistically

large, without affecting their long-range behavior. !

The HF + ATT and CI + ATT potentiais given by Eqs. (13) and’(14) é
were used to calculate the Hugoniots of liquid molecular hydrogen. . ﬁ
The results obtained are plotted in Figs. 5 and 6 (curves 3 and 4). ;
It can be seen from these figures that the Hugoniots determined from %
Eqs. (13) and (14) are in much better agreement with the experimental |
data than the Hugoniots determined from Eqs. (4) and (5). The CI + ATT
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potential given by Eq. (l4) appears to be in best agreement with the

available shock compression data. Some of the Hugoniot points

(P, V, T) calculated using the CI + ATT potential are given in

Table 1. Static isotherms to pressures of 25 kbar, calculated by
Ross using this potential, are in good agreement with experiment.
This same pair potential (CI + ATT) was used independently by Ander-
son et al, [10], whose work was reviewzd in Section 11, subsection C.

His calculations, shown in Fig. 4, confirmed that CI + ATT potential

is in good agreement with the static work. Hugoniots calculated using
Eq. (14) are also in good agreement with the shock-compression data
obtained by Dick [33] on liquid hydrogen at 150 kbar.

A pair potential that is in somewhat better agreement with the
900 kbar point, but in poorer agreement with the 210 kbar points, is

given by the equation

@(R) = 1.555e~1.435R, (15)

The Hugoniots calculated from this potential are shown in Figs. 5

and 6 (curves 5). This potential may be considered a rough lower
vound on the softuess of the potential, while the HF + ATT potential
given by Eq. (13) may be similarly considered a rough upper bounr,

Table 1 ;

' *
HUGONIOT POINTS CALCULATED USING THE CI + ATT POTENTIAL

V] Deuteri&m a
Parameters Hydrogen First Shock Reflected from First Shock

Ty (cm3/mole) 10.5 6.9 4.0 3.8 g
P (kbar) 43.8 205 810 937 |
T (K) 1334 4579 6464 6891 é
R (bohr) 5.50 4.78 3.99 3.92 N ?
d (bohr) 3.76 3.09 2,81 2,17 ?

Nd3 (cm3/mole) 4.73 2.64 1.98 1.91

*
Initial ronditions: V° = 28.6 cm3/mole (H) and Vo = 23,79 cm?/mole,
(D) T = 20.7 K.
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#ig. 5--Theoretical Hugoniots and the shock deuterium data of 3
van Thiel and Alder. :

1-Hugoniots calculated using pair potential given
by Eq. (4) (HF potential)

2-Hugoniot calculated using pair potential given
by Eq. (5) (CI potential)

3-Hugoniot calculated using pair potential given
by Eq. (13) (HF + ATT potential)

4-Hugoniot calculated using pair porential given
by Eq. (14) (CI + ATT potential)

5-Hugoniot calculated using pair potential given
by Eq. (15) 5

The circles are the nugoniot points of deuterium

obtained by Van Thiel and Alder [26]. The bar -
indicates the uncertainty (possible error) in

determining the Hugoniot points.
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Fig. 6-~-Theoretical Hugoniots and the shock deuterium data
of ven Thiel et al.

1-Hugoniot calculated using pair potential given
by Eq. (4) (HF potential)

2-Hugoniot calculated using pair potential given
by Eq. (5) (CI potential)

3-Hugoniot calculated using pair potential given
by Eq. (13) (HF + ATT potential)

4-Hugoniot calculated using pair potential given
by Eq. (14) (CI + AIT potential)

S5-Hugoniot calculated using pair potential given
by Eq. (15)

The circles are the shock Hugoniot points of deuterium @
obtained by van Thiel et al, [32). The tars indicate !
the uncertainty (possible error) in determining the
Hugoniot points. Apparent kinks in curves result when
the primary Hugoniots are reflected into a new path.
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Table 1 summarizes the data on the effective hard-sphere diam-
eter, d, and illustrates quite clearly how shock data provide infor- ¢
mation on the pair potential at small separations. The hard-sphere
diameter, d, represents the closest approach of shock-compressed
molecules to each other, and Nd3 represents the effective volume to
which the molecules are compressed due to the effect of both compres-
sion and high temperature--i.e., the effective volume on which infor-
m.tion can be obtained on the intermolecular pair potential. From
this table, it can be seen that, at a shock pressure of 900 kbar and
a shock temperature of 6891 K, the vclume is 3.8 cm3/mole, the effec-
tive volume is Nd3 = 1.91 cm3/mole, and, thus, the ratio is V/Nd332.
This same value of the ratio is also maintained at the other three

Hugoniot puints given in Table 1. Since the metallic transition of

hydrogen is usually predicted to occur near 2 cm3/mole, the high
temperatures achieved in shock~compression experiments make it
possible to determine the intermolecular potential at about the
same density as that required to reliably predict the metallic
transition.

The analysis in Section I, subsection B, of theoretical calcula-

tions of the pair potential showed that at temperatures and separations
along the Hugoniot, most of the molecules are freely rotating and that
the bond distance and probably the vibrational frequency are not signifi-
cantly affected. Calculations show that the molecular dissociation

does not exceed 4 percent. Therefore, it appears that the approximations
made in deriving Eqs. (4) and (5) are adequate. As noted earlier, the

CI intermolecular pair potential (Eq. (5)) at intermolecular separations

between 2 and 5 bohr i: generally determined with an error not
exceeding 10 percent. Nevertheless, considerable discrepancy exists L
between this potential and the CI + ATT potential of Eq. (14), which !
best fits the data but contains additional attractive terms.

3. Many-Body Intermolecular Effects

It was recognized that the discrepancy between the ab initio

calculated CI pair potential and the "effective' CI + ATT potential

may be due to energy lowering by many-body effects. However, no

e e et e ~fodor. A ek ML ? A Py deniabbielois i
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computations of nonpairwise additive contributions to the interaction
energy of a system of hydrogen molecules had ever been made. Ree and
Bender [13] performed such calculations involving three molecules.

In their calculations, the three-body potential energy, EABC’ is
obtained by taking the difference between the total ground-state
energy, EA+B+C’ of three H; molecules (A, B, and C, and the sum of
energies for geometries where at least one molecule is sufficiently

far away from the others--i.e.:

ExBc = Baspec ~ Eap = Epc ~ Epc ~ 3B, (16)

where the H-H bond lengths are fixed at 1.4 bohr. Geometries used
in the calculations (see Fig. 7) are isosceles triangles formed by
the Hyo~H, center-to-center intermolecular distances, with R,z = R,.
and RBC varying from RBC = RAB (an equilateral triangle) to RBC = 2RAB
(equidistantly located molecules along a straight line). Calculations
were performed for BAB = 2, 2.5, 3, and 3.5 bchr, The axes of the

T

H-H bonds are restricted to lie perpendicular to the plane formed by
the t-ree centers of H; molerules.

The results of these calculations are summarized by three curves
ABC/(EAB + B + EBC) vs 0, where
IS is the three-body potential energy of three hydrogen molecules

A
arranged in parallel geometry; EAB + EAC + E

srsy in Fie, ), which is a plot of E

BC is the two-body poten-
tial energy of three hydrogen molecules; and 6 is the angle between
RAB and RBC‘ It can be seen from this figure that the three-body

potential of molecular hydrogen is large and negative for the equi-

lateral configurations, and small and positive for the linear

geometri. Jitho uly a limited number of simple configurations s

were considered, the results show conclusively that a large three-

Jhody effect is a general phenomenon for all highly condensed states

of molecular hydroger é
The effect of t°  aree-body contribution to the theoretically ;

calculated pair potentials for the hydrogen molecule 1s shown 1in Fig. 8.

Curve 1 in this figure is the theoretically calculated (I pair poten-

tial given by Eq. ,5). Curve 2 is the empirical CI + ATT pair
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Fig. 7--A plot of the ratio (in percent) of the three-body

potential given by Eq. (14), obtained by adding attractive terms to

Eq. (5).

that best fits all of the available experimental data.
the effective pair potential with the effect of the third body taken
into account, as described by Ree and Bender.
this figure that, taking into account the effeci of the third body

on the pair potential results in a potential (curve 3) that is in

potential energy to the two-body potential energy
of three aydrogen molecules arranged in parallel
geometry as a function of 6, the angle between

RAB and RBC at fixed values of RAB = RBC’ (The

small figure on the right-hand side shows the
configurations used in the calculations.) [13]

l-a = 2.5 bohr
2-a 3.0 bohr
3-a 3.5 bohr

n

The CI pair potential lies above the CI + AT pair potential

Curve 3 is

It can be seen from
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V, cm3/mole

1073

R, bohr

Fig. 8--A plot of theoretically calculated vs experimentally
obtained molecular hydrogen pair potentials [7]. 1

1 - theoretically calculated CI pair potential
given by Eq. (5)

2 - CI + ATT pair potential given by Eq. (14)

3 -~ CI pair potential with the effect of the
third body taken into account

4 - EERD potential [9,10]

The vertical lines indicate the range of values of ;
‘the pair potential agreeing with the experimental
data (Eqs. (13) through (15)).

The expected region of transition into metallic
state is marked off by the arrows and letters

H,, H.
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qualitative agreement with the best-fit pair potential (CI + ATT,
curve 2) in the region of Hy stability. The agreement indicates

that adding the attractive terms to the pair potential of high-
density molecular hydrogen, as in CI + ATT potential, is equivalent

to adding the many-body effects to the CI pair potential. Also included
for comparison is the EERD potential used by Etters et al. [9,10] to
evaluate the solid state and gas data. This potential 1s in agreement
with the CI 4 ATT potential at large intermolecular separations and,
for this reason, both provide good agreement with the experimental
static data. However, the EERD potential is much stiffer at small
separations. It should be noted that near R = 4 bohr, the EERD

potential lies considerably below the CI results (which, at this
separation, should be accurate to 10 percent), indicating that the
simple ad hoc addition of long-range attractive terms to a Hartree-
Fock result (containing no attraction) may, in fact, overestimate the
attractive energy. From a more pragmatic or operational point of
view, the potentials are very similar--particularly when one considers

that Etters et al. made no serious attempt to interpret shock data.

The pressure and energy of dense snlid molecular hydrogen under
compression were calculated in the harmonic approximation, known to ]
be valid above 2 %bar, using the HF + ATT and CI + ATT potentials. ‘;
The results obtained are used in Section III to compute the metallic
transition of hydrogen. The 0 K static i1sotherms (excluding vibra-
tional pressure) calculated using HF, CI, and CI + ATT potentials 3
are plotted in Fig. 9, where they are compared with the theoretical ‘
results of Liberman [34].

The isotherm calculated using the CI + ATT potential (curve 4

in Fig. 9) is consistent with that of Liberman, who has calculated
the equation of state for molecular hydrogen using the Korringer-
Kohn-Rostocker (KKR) solid state band theory method, which treats
each molecule as a pseudo-molecule in which the two nuclear charges
were sphericalized. This converts the two-center spherical potential
into a one-~center spherical potential, which can be handled by

Liberman's KKR band theory code for a face-centered lattice.
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Fig. 9--Comparison of the O K isotherms (excluding vibrational d
pressure) calculated using HF, CI, and CI + ATT poter-
tials given by Eqs. (4), (5), and (14), respectively, !
with that obtained by Liberman. ;

1 - calculated using HF potential

2 - calculated using CI potential

3 - Liberman's calculations

4 - calculated using CI + ATT potential
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Since Liberman's calculations were made for a solid, they include
many-body effects. Therefore, the good agreement between Liberman's
calculations and those using CI + ATT pair potential, which was in
good agreement with the shock and static data and was shown to include
three-body effect, further substantiates the results of Ree and Bender
on the importance of many-body effect.

An explanation of the observed energy lowering below that predicted
by the CI pair potential and thus, possibly, indirect evidence for con-
tribution of the many-body forces, is given in the recent theoretical
work of Ramaker et al. [35] and Friedli [36], who have carried out
calculations of the electronic structure of molecular hydrogen crystal.
They found that, at very high pressures, the energy required to excite
an electron from the valence to the conduction band decreases with
decreasing lattice spacing, and eventually goes to zero, This leads
| to what might be a molecular insulator-to-molecular conductor transi-
tion at molecular hydrogen volumes between 5 and 2.5 cm3/mole. These
calculations will be discussed further in Section III in terms of

their bearing on the metallic transition. However, it is clear that

a decrease in the electronic excitation energy must cause an increase
in the molecular polarizability and, hence, a lowering of the total
energy. In other words, the increased polarizability leads to what
might be observed as an addirional effective attractive energy. This
may be seen from the expression for the van der Waals attractive energy
between two spherically symmetric molecules, a and b, separated by

a distance, R, given by the following formula [37]:

s anciditan sk

R% 2/RD 2
|om| l onl

et
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2
E (R) = -3 6 ’
v 3r m, nk0 (AE:0 + Ego) |

where R:o is the matrix element for an electronic transition in mole- ?
cule a with an energy change AE:o from the ground state 0 to an excited

state, m. A decreasing energy gap of the type observed by Friedli, as

shown in Fig. 10, would lead to enhanced attractive forces at high
density, although the precise functional form valid at small R might
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Fig. 10--Energy gap normalized to (K?/2m)-(27/3)2 as a
function of the lattice constant a. The solid
line is an approximate interpolation between
the calculated values, which are indicated by
circles [36].
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not b= the expression given by Eq. (17), which is rigorous at large
R. Since the increased polarizability results from the formation of

conduction bands, which are electron states of the whole material, it

is a many-bodvy effect. These results emphasize the need for further
work on the molecular solid to be carried out on the whole cr,stal.
In addition to the change in polarizability, which influences the

effective pair potential, a derreasing optical band gap would require

a reanalysis of the shock-wave data because this alone could result
in a softening of the observed Hugoniot. A narrowing of the band

gap allows enhanced electronic excitations, which, in turn, act as an
energy sink absorbing energy that would otherwise be used in transla-
tion, thus keeping down the temperature and the observed pressure.

In addition, 1t can be shown that a decreasing band gap AE will

contribute a negative term to the total pressure proportional to
*20E
v
compressed materials, including xenon, where it was identified as

Such an anomalous softening has been observed in many shock-

resulting from the narrowing of the 5p to 5d hand gap [38]. Ia the
case of hydrogen, additional complexity arises from enhanced dis-

sociation.
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+ II. EQUATION OF STATE OF SOLID METALLIC HYDROGEN

A. GENERAL )

In general, calculation’ of the equation of state and other
thermodynamic parameters of metallic hydroge, have given more consis-
tent results than those for the molecular hydrogen. For example, the
rysults of the earliest calcula:ion by Wigner and Huntington, using
the approximete cellular method, do not differ significantly from
the self-consistent Wigner-Seitz calculations of Neece et al. [39],
who used the same method with an improved correlation potential enexrgy
function.

There are four general methods by which the equations of state
of metals are commonly computed using current solid state theory.

These are: (1) electron band methods, such ac the augmented plane
wave (APW); (2) free electron perturbation theory (PERT); (3) the
linear combination of atomic orbitals (LCAO); and (4) the Wigner-
Seitz (WS) method. Another widely used method--the KKR (Korringer-
Kohn-Rostocker)--1is formally equivalent to the APW. Although the
earliest calculation of hydrogen by Wigner and Huntington [40] was
based on the WS method, the most commonly used method has been PERT.
Although metallic hydrogen calculations assume that the stable struc-
ture at 0 K is a solid, the possibility that it may be a quantum
liquid cannot be ruled out and will be discussed in Section IXI.

In view of the fact that no experimental data on metallic hydrogen
are available and all four methods are approximations, it is vevry diffi-
cult, %f not impossible, to determine the accuracy ~f calculations, or
even the test method to perform them. Nevertheless, it is possible to
estimate the differences between the best results obtained by these
four methods and, consequently, the extent to which predicted properties
of the metal will be model-sensitive.

This section will first discuss the methods used in the calcula-
tions of thermodynamic parameters of metallic hydrogen and then compare

and analyze the results obtained using the four techniques.
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To be cousisteﬁt, all calculations were performed for the ferc
lattice. Therefore, the energy, pressure, and Gibbs free energy
obtained by thP;APW, LCAO, PERT, and WS methods do not include con-
tributions from zero-point motion or electron correlation. The latter
two contributions to the energy, pressure, and Gibbs free energy were
each calculated by the same method and tabulated separately. Whenever
possible, as is the case in APW, PERT, and WS calculations, the Kohn-
Sham free electron exchange potential was used in all calculations in
order to retain as much as possible the same Hamiltonian, so t,it the
study would be capable of systematically discerning differences among
the models. The APW, LCAO, ani WS *sere all carried out as self-

consistent calculations.

B. CALCULATION METHODS

d
f 1. Augmented Plane Wave (APW)
: The most sophisticated of the four methods used in this set of
; calculations is the APW technique. It is a modified Hartree-Fock
procedure in which the exact exchange is replaced by a local free
electron exchange. In this method, tlie boundary condition on the
wave function of each electron state in the crystal is treated
exactly.

The total energy, excluding zero point motion energy and electron

correlation energy, is:

E=K+U, (18) 1

where K is the total electron kinetic energy and U is the total
potential energy, less correlation energy, given by the following ’

expression:

v far p@® v @ + 12, G+ 3w, e a9
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where p(r) 1is the electron density, V (r) is the electron nuclear
potential, V (r) is the electron-electron potential, V =~(3a/n)x
[3n p(r)]l/3 is the local exchange potential, and o is a parameter
that may be adjusted. (In calculations performed, it was taken to
be 2/3--i.e., the Kohn-Sham value.) Tn order to satisfy the varia-
tional principle, making it possible to calculate pressure, the wave
functions must satisfy the one-electron Schroedinger equation:

e, ¥, = [-1/72v2 + V(6 +V_ (x) +V_(0]¥,. (20)

The pressure is then computed from the virial theorem:

=2
PV =S K+

Wi =

u. (21)

2. Linear Combination of Atomic Orbitals (LCAO)
The LCAO calculations were based on a method first proposed by

Abrikosov [41] and, more recently, used by Harris et al. [42]. As
first suggested by Abrikosov, the Block wave function for the k-th

electron is written as:
= _ ik-r
B® = e TLGer ), (22)

where the sum is over all neilghboring lattice sites located at Rn
and ¢(r) is a single Slater-t spe orbital (STO) of the form e T,
where a is varied to minimize the total energy and satisfy the
variational principle.

Another set of calculations taken from Ramaker et al. [35] are
also used in this report. These authors wrote the wave function

in the form:
¥ (©) = ; o (4R exp[1(K4R) - T] 3 ¢(E-R), (23)
n
where k 1s restricted to the first Brillouin zone, K is a reciprocal

lattice vector, and ¢(r) is a single Slater-type orbital. Eq. (23)
differs from Eq. (22) in that it contains a sum over K.
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; It is interesting to note that correlation energy cannot be
included in the LCAO calculations in any tractable fashion consistent
with this method. It 1s a major reason why the correlation energy
contribution to energy, pressure, and Gibbs free energy was calculated

separately.

3. Wigner-Seitz (WS)

The results of WS calculations used in this report are taken from

a paper by Neece et al. [39]. In t.e WS method, each atom is assumed

to be in a spherical cell equal in size to the atomic volume. The
energy of the spherical cell consists of the following contributions:
F = 2.21 a'/rg in Rydbergs,

where o' represents a ~orrection for ti.e electron binding and is

1. The Fermi energy of the electrcns T

slightly less than unity and r is the radius of the spherical cell
in units of the Bohr radius a,.

2. The ground-state electron energy obtained by solving the

Schroedinger equation subject to the boundary conditions that the
wave function and its first derivative are continuous across the
boundary.

3. Corrections for exchange and correlation hetween the
electrons.

The equation of state for the pressure at 0 K is calculated from

the following equation:

p=-_S3E (24)

where n is the number of electromns per cm3, Neece et al. solved the

Schroedinger equation for the k = 0 state so that the wave function
is pure s. They assumed a free-electron density of solids, with an i
effective mass determined by the perturbation theory. Similarly to
APW, LCAO, and PERT calculations, Neece et al. [39] used the value

of 2/3 for the exchange pscameter a (Kohn-Sham exchange potential).
The calculations were dune self-consistently and included correlation

energy.
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; 4. Perturbation Theory (PERT)
% Since in the APW, LCAO, and WS methods it is assumed that the

protons form an ideal lattice, the equat!ons of state are valid only

at or near 0 K temperature. On the other hand, the free electron per-
turbation theory (dielectric-constant method) is inherently more
flexible and can be used to solve the problem for any ion configura-
tion, so that equations of state may be obtained by this technique

for 3 '‘'e range of temperatures. In the PERT method, in the lowest
appr~ + ..1x tne free electrons are assumed to be free and the

contributions to the free-~electron density due to interactions are

treated as first order perturbations. The self-consistent perturba-~
tion to the free electrons in plane wave states |k> due to the proton
potential and due to the induced electron density is calculated using

the expression:

Sng () = (eg! - 1) n (), (25)

where Gne(ﬁ) is the Fourier transform ~f the perturbed electron density,
np(E) is the Fourier transform of the proton density distribution, and

is the static dielectric function of a zero temperature electron

€
gzs. It is assumed that the electrons are in their ground state.
Neglecting the exchange and courrelation in deriving the static dielec-
tric function results in the well-known Lindhard function. The energy
per proton consists of the average kinetic energy per electron of
the electron gas at zero temperature, the net electrostatic energy
of interaction between protons and unperturbed electrons, and the
energy change due to perturbed electron distribution. The pressure 3
at 0 K is determined from Eq. (24).

The PERT calculations were performed using the version of the

method described by Hammerberg and Ashcroft [43]. Since these

authors have shown that the sum of the fourth order terms is negli~

e et oa LSRG

gible, calculations were made to third order only,

5. Zero-Point Energy Calculations j

The contributions to the energy, pressure, and Gibbs free energy

due to the zero point motion of protons were calculated from the
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following expression:
(26)
where OD is the Debye temperature. Below 2 Mbar, GD was taken

from the work of Neece et al. [39] and at higher pressures, from

their unpublished results [44]. Neece et al. [39] used ithe well-

known electrostatic model of Fuchs. This model suffices to approxi-

mate the magnitude of the zero-point properties of metallic hydrogen.

6. Correlaticn Energy Calculations

The free energy of a many-body system interacting via the Coulomb
potential can be expressed in the form of a perturbation expansion
whose leading term is the ring term. At near zero temperatures and
high densities, it is the major contributor to the correlation energy

of the electron gas. Graboske and de Witt [45] have numerically eval-

uated the generalized ring term for arbitrary density and temperature.
In the low temperature limit and in the density range of interest, ]
thelr numerical data were approximated by Neecz et al. [39] by the ;
following relationship:

E = - 0.1303 + 0.0495 1n(r ), (27)
corr s

where L is the radius of the electron sphere. This expression

used to calculate the electron correlation energies given in

this report differs by less than 10 percent from the more ;

common Nozieres-Pines [46] interpolation formula:

ECorr = - 0.115 + 0,031 1n(rs). (28)

A more recent and more rigorous expression for the correlation energy,
as derived by Hedin and Lindqvist [47], lies between Eqs. (27) and (28),

but is closer to the former.
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C. RESULTS OF THE CALCULATIONS

The energy, pressure, and Gibbs free energy for the fcc lattice
of metallic hydrogen calculated by the APW, LCAO, PERT, and WS methods
described in Section B are listed in columns 2 through 5, respectively,
in Tables 2, 3, and 4. The numbers in these columns do not include
contributions from the zero-point motion or electron correlation.
Column 6 in Table 2, labeled AE, is the difference between the highest
and the lowest values of emergy E calculated by all four methods (i.e.,
the highest and the lowes. e:rgy in columns 2 through 5) for each
volume listed in col:mn 1. I» similar fashion, column & in Tables
3 and 4, labelr. AP und AG, gives the difference between the highest
and the lowest values of pressure P and Gibbs free energy G, respec-
tively. Column 7 in each of these tables gives the contribution of
the zerc-point motion to E, P, and G as determined from Eq. (26).
Although correlation energy was omitted from the APW results shown
in column 2 of Tables 2, 3, and 4, another set of self-consistent APW
calculations was made using Eq. (27) as a local correlation energy
expression in which p=p(r). In this approximation, the total correla-

tion energy 1s written as:

J R TICT e

The problem was solved using the variational principle. The self-
consistent results were found to differ by not more than one percent
from the calculations in which the free-electron correlation had teen
added directly to the "uncorrclated" APW results obtained using the
same free-electron expression but with a constant p, or p=1/V.
Consequently, the contribution to the energy, pressure, and Gibbs
free energy due to electron correlation could be based on the free-
electron equation (Eq. (27)) using the constant charge density, p=1/V.
These contributions are shown in column 8 in Tables 2, 3, and 4.

Excluding columns 3b and 5, all of the data in Tables 2, 3, and
4 are taken from a paper by Ross and McMahan [48]. The numbers in
the LCAO cclumn (3b) in Table 2 are taken or interpolated from the
paper by Ramaker et al. [35].
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The results of WS calculations, shown in column 5 of Tables 2,

3, and 4, are taken from the work of Neece et al. [39]. These authors
used the Kohn-Sham o = 2/3 exchange potential and also included cor-
relation energy. For consistency, the correlation energy contribution
to the energy, pressure, and Gibbs free energy calculated using Eq. (27)
with a constant p=1/V was subtracted from their results. Therefore,
similarly to the data tabulated in columns 2 through 4 in Tables 2,

3, and 4, the numbers in column 5 also exclude contributions from
zero-point motion and electron correlation.

The LCAO calculation is an exact minimal-basis Hartree-Fock
procedure (a single STO), which treats the exchange energy exactly,
rather than via the local electron approximation, as do AFw, <Ru,
and WS methods. However, the results ohtained, listed in the LCAC
column in Tables 2, 3, and 4, show that thc computed exchange is very
close to that which could be obtained using a free-electron local
i exchange potential in which the adjustable parameter o = 2/3. The

| calculations also show that high-pressure calculations made with the

o simpler wave function of Eq. (22) are equivalent to those made with
i Eq. (23), as in Ramaker et al. [35], which employ an additiu: .l sum
over reciprocal lattice vectors.

The results of the third order PERT calculations of the ..ergy,

pressure, and Gibbs free energy (the upper numbers in column 4 in

i Sk S

1 the tables) are in good agreement with similar calculations by Ham~-
‘ merberg and Ashcroft [43] and Brovman et al. [49,50], also made to
third order. It should be noted tbat third order terms (numbers

i in parentheses in column 4), which have been omitted in most other

PERT calculations of metallic hydrogen used to estimate the phase
transition pressure into metallic state, are not negligible and §
should not be neglected. Hammerberg and Ashcroft [43] have also ;
shown that the fourth order terms are negligible, ;

Tables 2, 3, and 4 show that, in the pressure range O to 10 Mbar, g
the maximum pressure differences for the same volume, computed by
the APW, LCAO, PERT, and WS methods, are on the average 0.35 Mbar,
This represents good agreement between the results of calculations
using the four models. The average difference between the highest i

and the lowest values of the Gibbs free energy in the same pressure




b4

range is 0.03 Ry. Hubbard and Smoluchowski [51] have compared the
Wigner-Seitz, Thomas-Fermi-Dirac, and perturbation theory models at
pressures near 20 Mbar (rs = 1.0) and have concluded that the theo-
retical uncertainty in these models at these pressures is 10 percent.
Thus, the APW, LCAO, PERT, and WS models appear to be more than
adequate to calculate the energy, pressure, and Gibbs free energy of
metallic hydrogen, less the zero-point energy and electron correlation
contribution.

Column 8 in Tables 2, 3, and 4 shows that the free-energy contri-
bution resulting from the inclusion of correlation energy is 0.13 Ry.
Since this is four times larger than the differences between the
results of the four different model calculations nf Gibbs free enérgy,
the accuracy of electron correlation calculations will have consider-
able effect on the calculations of the metallic transition of hydrogen.
Local free-electron correlation potential energy expressions have been
used in atomic celculations in the same spirit as local free-

electron exchange. However, the correlation energy appears to be a

much more sensitive function of the total wave function than is exchange.
Therefore, the results obtained using the local free-electron approxi-
mation have rot generally been as good as those estimated using the 3
free-electron correlation energy. As an illustration, the correlation
energies computed by Tong and Sham [52] using the free-electron approx-
imation were twice as large as those estimated by Clementi [53] from
experimental energies. Similar results have been vbtained by Kim and
Gordon [54], who have found the free-electron expression to overestimate
the correlation by a factor cf three in small moleculecs, such as He,

Li, and LI+, and by a factor of two in molecules such as argon.
Monkhorst and Oddershede [55] have used random phase approximation

to calculate the correlation energy in metallic hydrogen using the 4

Hartree-Fock~Block functions of Harris et al. [42]}. They obtained
correlation energy values approximately three-fourths as large as ]
those calculated from the free-electron theory. j

The calculations described in this section have shown that the :
correlation energy calculated using a local free-electron expression
is approximately four times larger than the differences between the '

highest and the lowest values of energies at the same volume of
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metallic hydrogen, datermined by the four models. The theory of
electreon correlatio 1s a poorly understood quantum mechanical effect
and, thus, the nuierical results may be in error by a factor of two

to three. Therefore, accurate determination of fthe correlation energy
is the most important problem facing the ab initio calculations of

the properties of metallic hydrogen.

D. STRUCTURE OF METALLIC HYDROGEN

All calculations described in the previous section were made
for an fcc lattice. However, the actual structure of metallic hydro-
gen that could have an effect on the results of calculations is
unknown. Therefore, this section will discuss the effect of the
structure of metallic hydrogen on its calculated properties.

It is well known that calculations for b:c, fcc, and hep
lattice result in almost idencical thermodynamic properties. How-
ever, recent calculat® s by Brovman et al. [49,50], using a third
order PERT model have shown that the lowest energy structures for
metallic hydrogen at zero pressure are not cubic, but a complicated
anisotropic family of structures forming triangular two-dimensional
proton lattices in an electron fluid. Along the c-axis, the atoms
have a filamentary structure with no fixed periodicity in space. An
interesting feature of this anisotropy is the almost complete absence
of energy barriers between possible structures in the family. The
next higher energy modification is made up of a quadratic family of
similarly anisotropic structures. An energy barrier, or gap, exists
between the triangular and quadratic families. Brovman et al. found
that cubic structures that are characteristic of ordinary metals are
absolutely unstable with respect to more anisotropic structures. The
energy of the most stable anisotropic structure (triangular) is
0.018 Ry lower than that of fcc. This is less than the difference be-
tween the APW results and third order PERT calculations near zero pres-
sure and, therefore, no significant changes are to be expected in the
equations of state as a result of the anisotropy. Detailed calcula-
tions by Brovman et al. show that this tendency to anisorropy is unique

to metallic hydrogen due to its electronic interactions.being pure

i g o T Ry i T e T S R L e T e s e e
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Coulombic (metals such as sodium must be characterized by pseudo-
potentials and so do not have this tendency). It is shown that the
larger the value of the Fourier component of the electron interaction
for wave vectors on the order of the nearest reciprocal lattice vec-
tors, the greater the tendency to this anisotropy. In hydrogen, the
Coulombic interaction retains the same sign over all lattice vectors,
while in the case of pseudopotentials, the signs change and the Fourier
component passes through zero in the region of these vectors. Harrison
{56] has also pcinted out that multi-ion interactious are likely to
be strongest when the ions form a straight line and are separated by
nearest-neighbor distances. "his work appears to confirm the tendency
of metallic hyl~ogen to favor anisotropic structures., Brovman et al,
{49,50] have also calculated the stabilities of the varjous structures
under compression and conclude that the triangular lattice will be
st;ble below 0.25 Mbar. The system then transforms into the quadratic
structure and eventually, at extreme compressions, will stabilize in
a cubic lattice.

These results of Brovman et al. appear to be corrobor..ed at
least qualitative.; by the work of Beck and Straus [f , and of Caron
[58] who studied the dynamic structural instability of these lattices.
These instabilities are manifested in the appearance of negative fre-
quencies for some vectors in the Brillouin zone. These authors used
the free-electron per-urbation theory (Caron to second order and Beck
and Straus to third) to compute the phonon spectra in the harmonic
approximation. Beck and Straus determined the phonon frequ icies
from the dynamic matrix, while Caron used the self-consistent harmonic
approximation (3CHA). According to calculations by Beck and Straus,
the bcec lattice becomes unstable at r, > 0.6 bohr and the fecc at
r, > 1.0 bohr, where r is the radius of the atomic sphere. Caron's
calculations predict the fcc phase will become unstable at r, > 1.5 bohr
(P < 0.7 Mbar). The enhanced stability resulting from Caron's calcula-
tions is a direct consequence of the free energy minimization principle
incorporated in the SCHA method used in determining the correct wave
function. The SCHA technique has been successfully applied to the

quantum solid helium isotopes for which application of the harmonic
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approximation to the force constants is known to be inadequate. 1In
helium, solution of the dynamic matrix (used by Beck and Straus) at
low pressure leads to imaginary frequencies and an incorrect predic-
tion of the solid instability., In the SCHA method, the use of a

variational parameter to minimize the free energy and to compute the
frequency leads to greater flexibility of the Gaussian wave function
and to increased stability actually observed in the experiments.

Although the proper positioning of the instability may depend
on the phonon model, Beck and Straus argue that the basic cause for
the instability is the Kohn anomaly in the dielectric constant around
2 kf, where kf is the Fermi wave vector. Consequently, "the instabil-
ity is not just a question of nearest neighbors, but involves the
lattice structure as a whole." Clearly, both static and dynamic
calculations based on free electron perturbation predict that cubic
hydrogen lattices at low pressure are unstable to small displacements
and presumably revert to a less symmetric arrangement,

The existence of highly anisotropic, stable structures and the
instability of the cubic lattices was found using the free-electron
perturbation theory. Since Caron points out that the phonon spectrum
and, thus, the instability are considerably affected by the electron
screening, it would be very interesting if similar calculations could
be made using the LCAO method to determine whether the cubic lattice
instability is a real effect or an artifact of the PERT method. The
WS and APW methods as they are currently formulated are not suited for
computations of highly a.lsotropic structures.

As noted, the difference between the energy of the most stable
anisotropic structure and the least stable cubic structure computed
by Brovman et al. [49,50] was 0.018 Ry. This 1is less than the dif-
ference between the highest and the lowest cnergy values at the same
volume computed by the four different models. Therefore, the thermo-
dynamic properties of metallic hydrogen will not change significantly
as a result of structural changes. Consequently, it still appecars
that the most important theoretical problem in the path of an accurate
quantitative calculation of the metallic phase of hydrogen is the

corrclation energy in real metals.
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III. TRANSITION OF MOLECULAR HYDROGEN INTO A METALLIC PHASE

A. GENERAL

It has been almosct universally accepted that molecular hydrogen
will undergo a transition into a matallic phase at some elevated pres-
sure and that this transition will occur directly from the insulating

molecular phase to a conducting, or possibly, superconducting metallic

phase. Calculations have indicated that such a transition should be
first order and should occur at pressures above a megabar. Yet the
possibility persists that the transition may in fact be similar to the
gradual metallic transition observed in diatomic iodine in which, as

the pressure is increased, the valence electrons gradually occupy states
in the unfilled conduction band, leading to a higher order transition
ta%ing place at a lower than predicted pressure. Some preliminary
theoretical calculations indicates that this may indeed be the

case.

B. TRANSITION OF THE INSULATING MOLECULAR PHASE INTO A CONDUCTING
MOLECULAR PHASE

Calculations of the energy and electronic structure of molecular
hydrogen have been made by Ramaker et al. [35]. They used a Hartree-
Fock method originally developed for calculations of the equation of
state of metals and previously applied to cubic metallic hydrogen and i
lithium. This method as it applies to metallic hydrogen was used and
is discussed in more detail in Section II, subsection B. 1In applying
this technique to molecular hydrogein, each Block function |E> is

written as a sum over the atomic orbitals:

Ky = 2_: C(k,K) exp[1(k+K}'T) @ (u-R 45 ),  (30)
K

where k is restricted to the first Brillouin zone, K 1s a reciprocal-

B I NI

lattice vector, ¢ is a Slater-type orbitai, ﬁu is the origin of the
cell y where the sum over u runs over all lattice cells, and §n is

the position of atom n relative to the cell origin. The couvefficients
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c(k,K) are determined as functions of k, by the variational principle.
Ramaker et al. use only a single ls-type Slater orbital. The molec-
ular hydrogen crystal was constructed by placing one atomic nucleus
at the origin of each cell. The other nucleus was moved to the
position that yielded the minimum Hartree-Fock energy, thus optimiz-
ing the H-H intermolecular spacing at each deusity.

A very interesting prediction by Ramsker et al. [35] is that,
at a volume of 5 em?/mole (P =~ 0.3 Mbar), the electrons in the fully
occupied first Brillouin zone will begin to occupy states in the
second zone, and the molecular crystal will become a molecular me-
tallic crystal. If this result is correct, then any attempt to
locate the atomic-like metallic phase by measuring electrical con-
ductivity alone is likely to be ambiguous. These results have been
independently confirmed, at least qualitatively, by Friedli {361, who
has determined that the valence-to-conduction band electron energy
gap vanished at a density about 9.15 times the normal density, or
at an approximate volume of 2.47 cm3/mole and a‘*pressure of about
1.8 Mbar. These recent results (1975) of Ramaker and of Friedli
would represent upper bounds to the stability of the molecular in-
sulating phase.

The work of Friedli was carried out using a combined plane
wave localized orbital representation for the wave function. Un-
fortunately, this specific method has little prior history and is
difficult to evaluate in terms of other berter known methods. More
serious are the approximate construction of the one electron poten-
tial using a dielectvic formalism and the lack of self-consistency,
which can cause large errors in the interband energy differences
(band gap) =ven though accurate intraband relative energies may be
obtained.

Degpite these drawbacks (caused mainly by computational limita-
tions), we would expect the results to be at least qualitatively cor-
rect. Friedli's results are summarized in Fig. 10 in Section I,
subsection D-3, where they were used to suggest that the observed
softening of the intermolecular potential obtained from the shock

data might indeed be related to the closing of the band gap.
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In contrast to these results, no suggestion of the onset of band
overlap in molecular hydrogen appears to be present in the theoretical
0 K isotherm of Liberman [34], who used a KKR electron band method to
calculate the solid molecular properties of hydrogen. His calculated
isotherm was in very good agreement with the results from the shock
wave experiments. Assuming that this transition is embedded in Liberman's
work, the lack of any discernible discontinuity in the pressure may
indicate that such a transition is higher than first order, as is
observed in iodine.

For the sake of completeness, it may be useful to summarize some
of the important features of the only experimentally observed metallic
transition in a diatomic molecule, the metallic transition in iodine.
This transition occurs gradually at pressures between 40 and 150 kbar
[59] and has been identified as a continuous decrease in electrical
resistivity of many orders of magnitude, from that typical of an
insulator at 40 kbar to that of a metal at the highest pressure (metal-
lic electrical conductivity). At atmos-heric pressure, iodine is diatomic
and its equation of state is well characterized by pair potentials and
molecular lattice models, which, however, become increasingly inade-
quate under pressure. At low pressure (P < 40 kbar), the agreement be-
tweer. the experimental iodine Hugoniots and the results of calculations
based on APW band theory used to compute the properties of monatomic
metallic iodine [60] is poor. However, the agreement improves with
increasing pressure and becomes good at P > 150 kbar. These results
are consistent with the observed electrical resistivity measurements.
No useful experimental determinations of the crystal structure of io-
dine are avallable at pressures above the onset of the transition.
Therefore, only inferences may be made as to structural changes taking
place in this material. The transition is not first order (the actual
order is unknown) and it is reversible. The metallic phase is apparently
not metastable, although no attempts have been made to determine whether

unique conditions exist under which the metal may be prepared.

C. TRANSITION OF MOLECULAR HYDROGEN INTO A MONATOMIC METALLIC PHASE

If one neglects the possibility that wmolecular hydrogen may
become unstable as a result of the conduction band overlap, then

it is likely that the transition into a monatomic metallic phase
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will occur at a pressure of at least 1 Mbar. Since such high
pressures cannot presently be achieved in static presses having a
sufficient working volume, one is forced to resort to theoretical
calculations to determine the transition pressure and metastability.
The transition pressure at zero degree temperature is obtained
either from the common tangent to the energy-volume curves for the
molecular and metallic hydrogen phases or from the intersection of the
Gibbs free energy vs pressure curves for the two solid phases. Because
even = small difference in the equation of state of either phase re-
sults in a large change in the transition pressure, the methods require
the knowledge of extremely accurate equations of state or other thermo-
dynamic parameters of both the molecular and metallic hydrogen.
Extensive literature exists on the calculation of the transition
pressure of metallic hydrogen. However, most authors use some variant
of the models of molecular hydrogen discussed in this report. The usu-
al approach is either to extrapolate some effective pair potential that
is in agreement with low~density gas or solid data to yleld a multimeg-
abar equation of state for the molecular phase, or to use a pair poten-
tial obtained from first principles calculation. The equation of state
of the metal phase is most commonly calculated by means of the approxi-
mate, free-electron gas perturbation (PERT) theory and, with a few
exceptions, the calculations are made only to second order. '‘he main
objective in this report is not to perform another calculation of the

transition pressure into metallic phliase, but to systematicelly analyze

the uncertainties that are introduced into the prediction of the metallic

transition pressure as a result of uncertainties that are known to exist
in the models of each of the two phases. From the previous discussion,
it is to be expected that the largest uncertainties in such calculations
should result from an incomplete understanding of the nonadditive forces
in the molecular phase and correlation energy contribution to the
metallic phase.

The Gibbs free energy vs pressure of molecular hydrogen used in
determining the metallic transition pressure (PT) was calculated 1in
the harmonic approximation and includes the zero-point motion contri-

bution. The static lattice energy term was calculated with the CI
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pair potential, which obviously exclude many-body interactions, and
with the effective CI + ATT potential that best fits the experimental
data and is also in agreement with the theoretical estimates of
nonadditive forces (many-body interaction contributions). The Gibbs
free energy vs pressure of metallic hydrogen was calculated using the
four methods discussed in Section II, subsection B, and includes
zero-point-motion contribution calculated using Eq. (26). Two sets

of phase-transition calculations were performed for each of the three

models of metallic hydrogen. The results of the first set of calcula
tions, which include the free-electron correlation contribution to
the Gibbs free energy of metallic hydrogen computed from Eq. (27),

are given in Table 5. The results of the second set of calculations,

which do nct include the free-electron correlation contribution, are
given in Table 6. Results of the calculations, employing fractions
of the free-electron correlation energy, scale linearly between these
limits. The metallic transition pressures were determined by the
intersection of the Gibbs free enargy vs pressure curves for metallic

and molecular phases.

Table 5

METALLIC HYDROGEN TRANSITION PRESSURES IN MBARS, WITH THE
FREE-ELECTRON CORRELATION CONTRIBUTION TO THE GIBBS FREE
ENERGY OF THE METALLIC HYDROGEN TAKEN INTO ACCOUNT

Comp Transition Pressure - Mbars
Method CL Cl + ATT
WS 0.9 2.7
APW 0.9 3.1
PERT 1.1 3.7

It can be seen from Table 5 that the transition pressures calcula-
ted using the CI pair potential to compute the Gibbs free energy vs
pressure variation of molecular hydregen (PT = 0.9 to 1.1 Mbar) depend
very little on the model of metallic hydrogen used (WS, APW, PERT),
all of which incluie the same correlation energy. However, transition

pressures calculated using the CI + ATT potential to compute the Gibbs
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Table 6
METALLIC HYDROGEN TRANSITION PRESSURES IN MBARS WITHOUT

TAKING INTO ACCOUNT THE FREE~ELECTRON CORRELATION
CONTRIBUTION TO THE GIBBS FREE ENERGY OF METALLIC HYDROGEN

Transition Pressure - Mbars

Comp

Method cl CI + ATT
WS 3.3 ~11
APW 3.7 ~11
PERT 3.8 ~11
LCAO 4.3 ~11

free energy ve -roccuve variation are between 2.7 and 3.7 Mbar and are
thus significantly higher (by ~2 Mbar) than the two previous cases.
Physically, this means that the molecular hydrogen will be stable

to higher pressures and densities, provided the potential energy of
the molecular crystal is not a simple sum of pairﬁise—additive poten-
tials, but includes many-body interactions that further lower the
energy.

Referring to Table 6, it can be seen that exclusion of the cor-
relation energy raises the free e~ergy of the metallic hydrogen, al-
lowing molecular hydrogen to be stable to higher pressures. Using
the CI potential to compute the Gibbs free energy vs pressure varia-
tion for molecular hydrogen, the transition pressures calcuiated with-
out the correlation energy for all«metal wodels average out to about
3.8 Mbar, an upward shift on the order of 3 Mbar whea compared with
the transition pressure calculated by including the correlation energy.
Repeating the calculations in which the electron correlation is omit~
ted, and using the CI + ATT potential to compute the Gibbs free energy
vs pressure variation for the molecular phase, the predicted transi-
tion pressure goes up to approximately 11 Mbar, an increase oi approx-
imately 8 Mbar over the transitlion pressure calculated in the same
manner, but with the correlation energy included in the computations.
Thus, exclusion of the electron correlation and the use of either the
purely theoretical potential (CL) or the empirical potertial (CI + ATT)

result in an upward shift in the mwetallic transition pressure of from
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3 to 8 Mbar, respectively. Assuming that the free-electron correla-
tion expression should be one-third the magnitude of the free-electron
expression, as suggested by the results for small molecules, and the
correlation energy is thus decreased by three, the metallic transition
pressures then calculated using the CI and CI + ATT potentials to com-
pute the molecular phase properties will be 3 Mbar and 10 Mbar, respec-
tively. This is roughly a tripling of the pressure predicted by the

commontly used free-electron expression.

A description of what is actually occurring may be seen from Fig,
11, which shows the variation of the 3ibbs free energy vs pressure for
the molecular and metallic hydrogen phases. The metallic transition
pressure is determined from the intersection of the molecular and
metallic solid curves. For simplicity, only a single molecular Gibbs

free :nergy vs pressure curve calculated using the CI + ATT potential

is plotted in this figure (curve 2). For the same reason, only the
Gibbs free energy vs pressure variation for metallic hydrogen calcula-
ted in the third order PERT approximation is plotted in Fig. 11. It "3
can be seen from this figure that the two curves for metallic hydrogen
(curve 1, with electron correlation, and curve 3, without correlation)
are parallel, that they are intersected by the molecular Gibbs free
energy vs pressure curve at a small angle, and that the point of inter-
section of the two curves is extremely sensitive to small changes in
Gibbs free energy (i.e., a small change in Gibbs free energy causes

a large change in the transition pressure). It was pointed out earlier

that most previous free-electron perturbation calculations included

second order terms only. However, it can be shown that the omission

of the third crder energy terms results in an upward transition pres-

sure shift of about 0.3 Mbar and is much smaller than the possible
error in the uncertainty in the determinaticn of the correlation
energy. Since most previous calculations were made using one of the ,
four metallic equations of state (WS, APW, PERT, LCAO) with full cor-

relation energy and either a purely theoretical or empirical equation

of state of molecular hydrogen, it is clear why most predictions range

between 1.0 and 4 Mbar. However, serious inaccuracies in the correlation

energy could change this estimate of the metallic hydrogen transition

pressure considerably.
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Calculations made by Etters et al. [9,10], using their molecular

i hydrogen equation of state and a number of equations of state of metal-

_ lic hydrogen taken from the literature, show that the transition into
! the metallic phase should occur at pressures between 1.4 and 3.3 Mbar.

Since the stiffness of the EERD potential used in the calculations is

intermediate bhetween that of the CI and CI + ATT\potential, these
results are consistent with those given here. ’

The phase transition calculations were made on the assumption
that the hydrogen molecule is spherical. Since this is not the case,
Ross [6] has estimated the effect of nonsphericity on the transition
pressure by approximating the molecule as a dumbbell in which the
potential between two molecules is the sum of the potentials between
the atoms on opposite molecules. An effective atom potential was
determined from the sphericalized potential. He established that
treating the atoms as diatomic vesults in a decrease in their Gibbs
free energy and a rise in the metallic transition pressure by about

20 percent. Thus, assuming the validity of approximations used

(including o structure for dense molecular hydrogen), the transition

prassures given in Tables 9 and 10 should be less than 20 percent
highe. than the values given. These results are consistent with
work of Raich and Etters [8], who have made similar calculations
during the course of their work on the rotational transition in

solid hydrogen at high pressure.
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IV. STABILITY OF METALLIC HYDROGEN

A, GENERAL
To be technologically useful, metallic hydrogen has to be
metastable at sufficiently low pressures and relatively "high" tem-

peratures. Metallic hydrogen will be metastable if the decay rates

from the less stable metal phase to the more stable molecular phase
are small and, therefore, the lifetime of the metal is long. Tradi-
tionally, such calculations 1ave been extremely difficult to perform
and, as a result, the existence of metastable metallic hydrogen will
probably remain unpredictable.

As is well known, metallic hydrogen has a very high Debye tem-
perature (2000 to 3000 K) and could be a quantum liquid. Therefore,
before discussing the possible existence of a metallic hydrogen phase
that is metastable with respect to the molecular phase, one should
corsider whether the crystalline form at 0 K is even likely to be
stable with respect to the liquid form. If the latter is the stable
form at 0 K at the transition pressure, then it is unlikely to avoid

rapid decay iato the molecular form on decompression.

B. MELTING OF THE CRYSTALLINE METAL PHASE
It was pointed out by Yestrin [61] that, according to thermo-
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dynamics, the metling temperature of the metastable phase of any
substance is always lower than that of its stable form. When both

a stable and a metastable liquid phase exist, the melting temperature
of the solid at which stable liquid is formed is always lower than f
that at which the metastable liquid is formed. 1In the general case

of two solid and two liquid phases (stable and metastable), the lowest

melting temperature is that for the metastable solid into a stable :
liquid, This implies that the lowest melting temperature at atmospheric
pressure is the melting temperature of the metallic hydrogen accompanied
by formation of a stable (molecular) liquid and that this temperature

is lower than the melt ng temperature of molecular hydrogen forming J
molecular hydrogen liquid. However, it is not clear whether these ;
arguments remain valid for quantum solids and quantum liquids, such

as the solid and liquid molecular hydrogen.
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Several atiempts were made to calculate the melting curve of
metallic hydrogen. Trubitsyn [62] used the Lindemann law, written
in the following form:

T, = Cogv, 2/3, (31)

where Tm is the melting temperature, C is a constant, ed 1s the

Debye temperature, and Vo is the atomic volume on melting. Trubitsyn
assumes that the constant C, which applies to Li, Na, and K, can also
be used for hydrogen. According to his estimate, Tm = 4000 K for
solid metallic hydrogen at atmospheric pressure. However, the use

of this model implies that hydrogen is a classical solid. This may
not be true since Hubbard and Smoluchowski {51] point out that, at
sufficiently large Bd, zero-point vibrations of the lattice will
cause it to disintegrate even at zero pressure, so that the substanc-
will be a quantum fluid such as helium. According to their argument,
the work by deWette [63] and Carr [64] indicates that Lindemann law

can be written as:
T - Kell3, (32)

where K is a constant and p is the density. This equation can be
justified in that the lattice will presumably disintegrate when the
root mean square of amplitude of proton vibrations exceeds a given
fraction of the lattice spacing. Assuming that the protons are
immersed in a uniform density electron fluid and the metal behaves
as an ideal Coulomb lattice, the Debye temperature can be expressed

as:

0, ~ 3400 pl/2k", (33)

d

An inspection of the functional form of p in Eqs. (32) and (33)
shows that Od increases more rapidly with density than Tm so that,
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at some compression. the solid metal will eventually disintegrate
into a liquid. However, unless the proportionality constants are
known, it is impossible to determine the densi.y at which this will
occur.

An attempt at a quantitative theory may be made based on the

work of Hansen [65], who has made extensive Monte Carlo calculations
for a system of pcositive ions in a uniform background neutralizing

the electron fluid. He calculated all of the thermodynamic properties,
including the melting curve over a wide range of variables. All of
these properties were expressed in terms of the reduced variable

I'y where

2

r= r kT ?
s

(34)

ry is radius of the electron sphere, T is the temperature, and kT
is expressed in Rydbergs. Hansen showed that a bcc crystal of

positive ions melts when I = 155. At larger T (smaller r  or T),

the crystal is stable. These calculations are purely classical,
while we are interested in the analogous quantum melting problem
at 0 K. The change from the classical to quantum system will be i
made on the assumption that the quantum system meits at 0 K, when

its harmonic oscillator energy (zero point energy) is the same as

i St

that of the classical harmonic oscillator when it melts, The trans-
formation from classical to quantum variables is made by equating

the classical and 0 K quantum harmonic oscillator energies,

3kT = (9/8)6D. (35)

The reduced variable T, Eq. (34), written in terms of quantum

variables, then becomes: g

4
3rseD

B
: (36) a
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Because ' = 155 at the melting point, the variation of melting density

with Debye temperature becomes:

4
155 = . (37)
m.m
3rSOD

In Eq. (37), the superscripts denote the values of the variables at
melting. Thus, the Lindemann law is generalized to O K by assuming
that the same amount of harmonic oscillation energy is required to
melt a crystal at any temperature.

Using Eq. (36) to compute 6D as a functicen of re, it can be
shown that when L 1.07 bohr--i.e., at a density p = 2.5 g/cm3
(0.4 cm3/mole)--and at a pressure f 12.7 Mbar, T = 155. At larger
voluwes, ihe decrzase in OD is more rapid than the increase i r..
Thif indicates that above I' = 155 the metal is a solid. Thus,
according tc¢ these calculations, metallic hydrogen would be a
£olid a. pressures below 12.7 Mbar and a liquid at nressures above
12,7 Mbar. However, these calculations assume a uniform background of

electrons and do not include the electron screening--i.e. the piling

up of electrons near the protons.

C. METASTABILITY OF THE METALLIC PHASE

The work of Brovman et al. [49,50], discussed in Seciton IIL, sub-
saction D, indizates that the most stable hydrogen structure is hignly
anisotropic and similar tc graphite. It has been suggested that, as
a recult metallic hydrogen may be metastable in respect to molecular
hydrogen in much the same manner as graphite is metastable in respect i

to diamond. Thils analogy drawn between carbon and hydrogen must be

con3idered wishful thinking of physicists that could never be shared
by organic chemists who are fully aware of the uniqueness of the :
carbon atom through its ability to hybridize its four outer shell i
ele:trons Into a wlde assortment of shapes and valences. The many
complicated aromatic and al. hatic structures found 1in naturc and i
synthesized are proof of the struc_ural versatility of the carbon

atom and its abllity to form complicated bonding arrangements, On

the other hand, the hydrogen atom generally appears in molccules

i
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E as an appendage forming a single simple bond. Thus, there appears
to be no basis for drawing any such parallel betweer carbon and
hydrogen.

Salpeter [66] has estimated the lifetime of metastable metallic

hydrogen for the case when pairs of atoms evaporate and reform as

molecules. Using known theoretical estimates of the cohesive energy

and the Debye temperature of the metal, he obtains a binding energy

curve for atoms in the metal in the outward direction from the crys-
tal. The atoms are bound in a potential well near the surface with
a barrier preventing their evaporation. The hinding energy curve

of two atoms in the molecule is well krown, allowing Salpeter to
construct a potential energy diagram connecting the two regions and
to estimate the barrier height. Using WKB theory to evaluate the
tunneling probability of an atom pair leaking away, it was estimated
that the lifetime of metallic hydrogen at zero pressure is 100 sec.
This estimate is claimed to be conservative, overestimating the life-
time. Salpeter points out that because at -he same densities, the

increase in energy of molccular hydrogen with pressure is more rigid

than that for metallic hydirogen, the lifetime of the latter will
increase with pressure.

One of the aspects ignored in these calculations is the thermal
runaway, when the exothermic eneigy of formation of metallic hydrogen
heats up the crystal, increasing the rate of evaporation and leading
to a cascading disiitegration.

An additional feature of crystalline metallic hydrogen likely
to lead to an enhanced decay rate in the wmolecular form is the large

zero-point motion that is equivalent to thermal temperatures of the

order of 2000 to 3000 K., These large motions could allow ncighhoring
protons to approach each other sufficiently close to permit the for-
mation of dimers. Chapline [67] has calculated probable -oot mean
square di: lacements of protons in a one-atmosphere crystal and, by
examining the resultant energy change, had estimated that a plven
sample of metallic hydrogen would convert to the molecular form in

about 10~} sec.
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One may summarize the calculations and arguments on the metasta-

bility question by noting they all have been heuristic and, while
suggestive, lack the essential rigor to be convincing. This question

is unlikely to be answered outside of the laboratory.
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V. EXPERIMENTAL RESEARCH

A. GENERAL

Three experimental methods have been used to determine the high-
density equations of state points of molecular hydrogen. These are
the static isothermal (static high-pressure) experiments and shock
compression and isentropic compression techniques. Isentropic com-
pression and, possibly, static high-pressure experiments can be used
to achieve compressions needed to convert molecular hydrogen into
its metallic form. Laser and electron beam compression techniques
have also been proposed for observing metallic hydrogen.

Assuming that Mbar static pressures can be achieved, static
high-pressure experiments comprise the only technique potentially
capable of manufactuying metallic hydrogen--i.e. producing it with-
out destroying the sémple, as is the case in shock, isentropic, and
other types of experiments in which hydrogen can be compressed to
metallic dencities. While unproven and possibly unfeasible, con-
densaticn of spin-aligned hydrogen followed by static compression
is the only other method proposed to date that can, in principle, be
used to manufacture metallic hydrogen.

A comparison of the results that can be obtained from the static
high-pressure ard isentropic and shock compression methods is illus-
trated in Figs. 1Z and 13, which show the variation of pressure and
temperature of molecular hydrogen with molar volume. 1In these fig-
ures, the solid curves were computed using a molecular hydrogen
equation of state determiied from the CI + ATT potential, which is
in agreement with the currently available experimental data. The
temperatures in Fig. 13 were calculated theoretically. These figures
demunstrate that each method .i;.gn'.que in its ability to study the
thermodynamic properties of hydrogen over different ranges of temper-
ature and density. As a result, each experimental method makes a
unique contribution to the development and testing of theoretical

models.
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Fig. 12--A plot ¢ pressure vs molar voiume for molecular
hydrogen, calculated using a hydrogen equation of ;
state determined {rom the CI + ATT potential 3
(Eq. (14)), which is in agreement with the avall-
able data.
1 - primary Hugoniont, 2 - reflected Hugoniot,
3 - isentrope.
The horizontal bars are estimates of the experi-
mental cerrors in determining the pressure.
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Fig. 13--A plot of temperature vs molar volume for
molecular hydrogen, calculated using a
hydrogen equation of state determined {rom
the CI + ATT potential (Eq. (14)), which is
in agreement with the available data.
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B. TISOTHERMAL COMPRESSION

1. Experimental Molecular Hydrogen Equation of State Data

The best-known method of determining the equations of state of
materials is static isothermal compression using high-pressure
apparatus. Unfortunately, the only static isothermal data on solid
hydrogen and deuterium are the low-pressure (up to 25 kbar), low-
density (from 22.6 to 9.5 cm3/mole) equation of state points measured
by Stewart in 1956 [1] and Anderson and Swenson in 1974 [2].

Stewart [1] used a piston and a cylinder device to obtain eleven
pressure vs volume equation of state points of molecular hydrogen
at 4.2 K and at pressures up to 20 kbar, Until recently, his results
3 were the only isothermal data available on molecular hydrogen and
. hav% been used extensively for testing its interaction potential
3 and its cohesive energy. Anderson and Swenson [2] published the
results of similar experiments on molecular hydrogen at 4.2 K, per~

formed in an attempt to extend their range and accuracy. Their

pressure vs volume points at pressures up to 25 kbar are in excel-
lent agreement with Stewart's data. Table 7 summarizes the experi-
mental data of Stewart, which are also plotted in Fig. 14 with the

E pressure vs volume curve of Anderson and Swenson.

Table 7 [1] {

EXPERIMENTAL PRESSURE VS RELATIVE VOLUME DATA OF STEWART ]
FOR MOLECULAR HYDROGEN '

P p . -.
bar AR (bar) NATS
0 1000 3921 0.632 j

196.1 0.928 5884 0.583 ’

392.2 0.883 7845 0.549 ]

588.4 0.847 9806 0.523

980.7 0.794 11768 0. 500

20073 0.711 15691 0.467

2942 0.667 19613 0.445




I PR

67

0.92 n
0.84 4
0.76 T

-

<

= 0.08 4

0.60

-,
\) i \‘\‘\ ‘J
44 —

-
0,136 ) | A1 1 ! ) S | L 4
0 4 3 12 16 0 A
P, kbar

Fig. 1l4~-A plot of relative volume vs pressure for molecular
hydrogen acquired by Stewart (points) and Anderson
and Swenson (solid curve) [2].

SINP A ket

s

L




‘ e a el L o e il
mrw rwrT— T T

68

Comparison of Stewart's and Anderson and Swenson's data with the
results of theoretical calculations should, in principle, provide
a check on the quantum mechanical calculations for the intermonlec-
ular potential of hydrogen appropriate to these pressures and
densities, However, accurate theoretical potential calculations at
these intermolecular separations have not been made because such
calculations require prohibitively large basis sets to compute the
small quantum mechanical interaction energy, As a result of the
importance of attractive forces at these separations, empirical
intermolecular potentials fitted to low-pressure and low-density
data weculd be likely to predict accurately the properties of molec-
ular hydrogen at high density, where the behavior of the pair
potential is governed by the steeply repulsive short-range forces.
The latter is best studied by the use of high-pressure shock-wave
data so that the two techniques, static and shock, are highly
complementary.

Since hydrogen is a quantum solid with a large zero-point

energy, the large compressions achieved in static isothermal exper-

TP DT e AT A Smwas g Tt

iments are actually deceptive. The molar volume of molecular hydrogen

at 20 kbar is about 10 cm3/mole--i.e. a compression of nearly 2.2.
However, of the 20 kbar, only 13.5 kbar is static lattice pressure,

the remaining 6.5 kbar being due to pressure from zero-point motion,

2. Experimental High-Pressure Research

A breakthrough in generation of Mbar static pressures was claimed

to have buven achieved by Kawai in 1970 [68,69] using a two-stage
split (segmented) sphere, a modification of von Platen's apparatus
developed in the 1950s. The simplest version of this device is the
single-stage split sphere consisting cf segments of a sphere with
truncated inner faces, assembled together with small spaces between
them. When the segments are pushed together, the truncated faces
forming the anvils compress the sample. 1n the earlier rersion, the
sphere i3 surrounded with a deformable membrane, whi n the later
model, it fits into hemispherical cavities in a steel cylander split

into two equal parts. The whole assembly 1s immersed in a fluid
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compressed by a hydraulic press. Assuming that the sample and
the anvils are not deformed, the pressure P in the sample can be

estimated from the approximate formula P = P (A . /A), where P
ex ext e

t
is the external hydrostatic pressure exerted on the outside of the

Xt

sphere by the fluid, Aex is the external area, and A is the internal

area of the sphere. Sinze a sphere with Aext/A = 15,000 can be
readily constructed, in theory, pressure multiplication ot ~15,000
zan be achieved. In practice, this formula cannot be used due to
the decrease in the applied forces resulting from the stiffaess of the
membrane, friction between the stages, compression of the stages, the
opposing forces produced in the gasket material, etc., However, it can
be modified by introducing the efficiency factor, a numerical parameter
always less than one, which takes into account the drop in th=2 applied
forces due to various factors.

Since the mid-1960s Kawai has designed and used both a single-~
stage split sphere [70,71,72] and several versions of the two-stage
split~sphere apparatus [69,72-75]. According to Spain [76], Kawai

is also developing a three-stage split sphere. It 1s claimed that

the use of several stages improves the efficiency of the device.
The simplest version of the press, called the single 8-anvil 4
split sphere [70-72] is actually a two-stage sphere with each stage
divided into eight equal sections by three perpendicular plancs
through the center of the sphere. The eight anvils are formed by

gluing together with epoxy resin each of the eight sections of the
inner stage with the corresponding section of the outer stage, which
forms the backing block. The apex of each inner stage anvil is

truncated to form an octahedral sample chamber at the center of

the inner stage. The sample, surrounded by a machined sample-
holder made of.a pressure-transmitting medium such as pyrophyllite,
is placed within the sample chamber. The anvils of the inner stage
are made of tungsten carbide. The six corners between the four
adjacent sections cf the sphere from which the backing block is f
made are flat. Spherical shape of the outer stage subassembly is

maintained by attaching six corner caps to the outer flat sides of

the backing block. The corner caps prevent freec rotation of the

segmented sphere and shifting of the pistons during their advancement.

e by G s s i e ™ Ani




70

Sheets of soft insulating material, consisting of a combination ot
pyrophyllite and cardboard, are placed in the several millimeter-
wide gaps between the anvils. As the pressure is increased, some of
the material in the gaskets between the pistons and in the sample
chamber is extruded. However, as the pistons move closer together,
the filler becomes thinner, inhibiting further outflgw of material
and providing lateral support to the inmer portion of the pistons.
The whole spherical assembly is covered with a pair of thick hemi-
spherical rubber shells and is placed in an oil reservoir consisting
of a cylinder and two pistons. The cylinder is made from a section
of a gun barrel sealed by rubber O-rings mounted in a groove cut
into a nylon ring. The o0il reservoir is set under a 2000-tun
uniaxial hydraulic press. Fluid pressures up to 3000 kg/cm? were
obtained using turbine oil. In one of the single 8-anvil split
spheres, the outside diameter of the outer-stage sphere was 25 cm,
the diameter of the sample chamber was 0.2 cm and, thus, the ratio
of the two surface areas was 15,000. The sample could be heated to
2000°C by passing electric curvent through a graphite tube in the
sample chamber., A thermocouple and a pressure calibraticn unit or
other instrumentation could be placed in the sample space.

A later version of the segmented sphere is the 6-8 anvil split-
sphere apparatus [69,72]. In this model, the outer anvils are formed
by six identical sections of a hardened-steel sphere, with the inner
tapered part of each section truncated to terminate in a square-shaped
inner surface. Eight tungsten carbide cubes forming the inner anvils
fit into the cubical cavity formed by the six outer-stage anvils. The
innermost corner of each inner anvil is truncated so that, when placed
together, the eight cubes form an octahedral sample chamber at the
center of the apparatus. Insu.ation matevial is placed in the gaps
between both the inner and the outer anvils. The inner anvils are
also insulated from the outer anvils by sheets of mica. Slots at
the joints of the outer anvils are sealed with Bakelite bars. The
edges of the triangular faces of the inner stage anvils forming the

sample chamber are 0.2 cm long. The edges of the pyrophyllite
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octahedron sample chamber are 0.4 cm long. The dimensions of the
samples are 0.03 to 0.07 x 0.3 x 1.5 mm. The electrical resistance
of the sample is measured using a four-terminal DC technique. The
rest of the 6-8 anvil apparatus 1s similar to that of the single
8-anvil split sphere.

The basic disadvantage of the earlier models of segmented-sphere
static presses developed by Kawai is that they are cumbersome to
use: the spheres have to be covered with a rubber shell, the attach-
ment measuring the physical properties has to be replaced aiter each
experiment, and handling of the spheres becomes more difficult with
increasing diameter of the sphere. Therefore Kawal has simplified
the design of the segmented sphere. His latest .odel [75], which
will be referred to as the modified 6-8 split sphere, is similar to
the 6-~8 anvil apparatus. However, its outside surface is nearly
spherical and is thus not equipped with either corner caps or
hemispherical rutber shells. The sphere formed by the outer anvils
made of sintered tungsten carbide fits into the upper and the lower
hemispherical cavities in a hardened-steel cylinder that is split
along its axis into two equal parts. One corner of each of the six
outer anvils was cut off and replaced with a removable, hardened-
steel, faceted block. The size of the corners replaced with the
faceted blocks was determined by placing three of the outer anvils in
the hemisphere in the upper part of the cylinder and removing the
corner of each outer anvil protruding above the equator of the
hemisphere.

Similar to the 6-8 anvil apparatus, the inner stage of the
6-8 split sphere is made of eight cubes with the octahedral sample
cavity formed by truncating che innermost corner of each of the cubes
forming the inner anvils., Of the eight inner anvils, two are made of
tungsten carbide and used as electrodes and the remaining six are
made of sintered alumina, which is an insulator. Cardboard spacers
are placed between the equatorial contact planes and also between
the inner anvils. According to Kawai, the load required to generate
a given pressure in the specimen in the modified 6-8 split sphere is
apparently only one-third of that necessary to produce the same

hydrostatic pressure in the 6-8 split sphere.




— il T T R W el T T s T
,

72

Among the most interesting results obtained by Kawai using the
older model (i.e. the 6-8 split sphere) was the observation of
metallic-phase transition in Fe;03, Cr03, Ti0o [77], and Ni0O, [78]

at room temperature under a load of up to 2000 tons and at oil pres-

sures between 2000 and 3000 kg/cm3. For the apparatus used, the

magnifying ratio is 103, Assuming a 100 percent efficiency, the
theoretical hydrostatic pressure in the chamber could be 2 to 3 Mbar.
However, since no intermnal calibration was available and the effi-
ciency is unknown, the actual pressure cannot be determined. Later
experiments using the modified 6-8 split sphere indicate that the
hydrostatic pressure achieved in the 6-8 apparatus was lower than
originally estimated, but still claimed to be in excess of 1 Mbar.
Very significant phase transitions in several materials were
observed by Kawai using his modified 6-8 split sphere. Unfortunately,
the pressures at which these phase transitions occurred are unknown
and the results are given in terms of the load. Metallic-phase
transitions were observed in crystalline SiO, at a load pressure of

approximately 700 tons [79], Mg(U at approximately 980 tons [80], and

in pure water (ice) at approximately 950 tons [8l1]. Phase transition
of molecular hydrogen into its metallic form claimed to have been
ohserved in the latest experiments [82] is discussed in Section V, ;
subsection G. For comparison, it is interesting to note that the !
transition ot GaP into its metallic state, which is known to occur
at 220 kbar, was attained in the modified 6-8 split sphere apparatus
at a load of only 150 tons.

In 1955, Vereshchagin et al. [83], of the Soviet Institute of

Physics of High Pressures, reported developing synthetic carbonado,

a synthetic polycrystalline diamond compact containing less than one
percent of transition metals. According to Vereshchagin et al. [84], 5
the hardness of carbonado is approximately 1 Mbar, its Young's modulus
is 9 Mbar, and its Poisson ratio is 1/4. Thus, carbonado is harder i
than, but otherwise appears to be similar to, natural diamond. The %
excellent properties of carbonado are claimed to be due to proper |

grain size (~1 mm), proper size distribution, absence of cleavage,
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and low (less than 0.01) porosity (no reference is made as to whether
diamond-to-~diamond bonding was achieved). Although carbonado is fabri-
cated at a pressure of approximately 90 kbar and a temperature of
approximately 1200°C by direct conversion of graphite to diamond, the
exact fabrication method is unknown. Carbonado can be formed to shape
by machining diamond-grade graphite to the desired design and then
converting it to carbonado in the press. The effect of conversion

on the dimensions of items made of carbonado is readily taken into
account. In 1972, the Soviets were able to fabricate finished pre-
clision industrial items of carbonado with linear dimensions of up

to 1 cm.

In 1972, Vereshchagin et al. [84-86] reported contact pressures
in excess of 5 Mbar using opposed carbonado anvils consisting of a
conical indéntor with a rounded tip pressed against a flat anvil.

In most experiments, the angle defining the cone, B, was 6°., It

was calculated that an estimated contact pressure of 1.6 Mbar was
generated by a force of only 1 kg when the radius of the rounded

conical tip, R, was 10 um. Increasing the force to 30 kg and using

an identor with R = 100 ym and R = 10 um increased the estimated contact
pressures to 1.1 and 5.1 Mbar, respectively.

In a number of subsequent papers, Vereshchagin et al, reported
observing metallic transitions in diamond ([87-891; Si0, [90]; Al,03,
NaCl, and S [91]; H,0 (ice) [92], BN {93], and MgO [94] at pressures
estimated to exceed 1 Mbar. Metallic-phase transition of molecular
hydrogen [95] is discussed in Section V, subsection G. In these
experiments, the metallic trznsitions were determined from the
discontinuous changes in electrical resistivity of samples under
pressure. Upon removal of pressure, the electrical resistivities
of materials returned to their normal values. The insulator-metal
transition pressure was observed to decrease with increasing temper-
ature and vice versa. The diszontinuous changes in electrical
resistivity were occasionally caused by shorting of the anvils.
However, in such cases, the sharp drop in electrical resistivity

remained practically constant. A technique based on the existence
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of metastable metal and insulator phases characteristic of the first
order phase transgtions in Che insulatoir-metal system was developed
by Vereshchagin et al., to ascertain that shorting of the anvils did
not take place, *After the sample was trunsformed into its metallic
phase, the pressure was gradually decreased to a value just above the
metal-ingulator transition pressure. Heating the sample at this j.es-

sure caused transition of the metal into the 1ﬂau1ator phase--1i,e.,

a sharp increase in 1ts electrical resistivity.
. The most recent experiments were performed to set up a relative .
calit.ation *.cale based on the metallic-phas. tranasitions of insu.ators .
' observed at the ver» high pressures between opposed carbonado anvils.
A thin film of a mixture of two insulators with the typical component .
. ratic of 1 4> . was deposited on the flat anvil and compressed until
both compo..ents underwent transition into metall{c phase at two
. diilerent undetermined [.essures. The concentratior of one com- ' .
ponent was .*.creased typically to &zs:omponent ratio of 10 to 1. . .

+«The increase in concentrption of one componént resulted in a larger

drop in t.': electrical resistivity upou r.tallic-phase tranc«:ion
[ )

nf :hat component, making it possible to determine whether it occurs : ﬁ
at a lower or higher pr2ssure than fhat of the other component.

. .
Thee experiments made it, pcssible to establish the following

sequence c,° insulator-metal transition pressure: ]

P <P < P <

caP “ Fraci < Pa1,0; < Py < Pc < Psg0, < Pug
The transition pressures of S10; and Mg0 are in the same sequence as
those established by Kawal., According to the Japanese experiments,
the transition of water into its metallic phase should occur at a
higher pressure than that for Mg0.

\ The contact pressures b *.ween carbonado anvils were calculaied
from ejuations derived ',v Hertz in 1881 for a paraboloidal indentor . i
pressed against a flat plate. The contact area was determined from

‘the area of thc imprint left on a film of material deposited on the _ 1
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flat anvil (cellulose nitrate varnish dissolved ir. acetone was
frequently used). In a 'ery recent paper, Ruoff and Chan [96] point
out that since Hertz's equations are derived for a parabocloidal in-
dentor, one lir‘tation to its applicaticn to conlcal indentors ;!th
rounded tips used by Vereshchagin 1s {hat a < xp, where a is the
contact radius anJ xp 1s the perpenQicular distance from the piston
axis to the point where the paraboloidal region joins the conical
region. The authors then derive expressions for the maximum applied
force and the maximum contact pressure which for various indentor
materiels give the liﬁiting values above which the Hertz theory
does not apply due to the failure of the condition a < xp. It is
shown that, in the case of a conical indentor with a rounded tip
made of carbonado, Hertz's theory is invalid at contact pressures

P > 0.21 Mbar. If the applied force is increased beyond its limit-
ing value, the contact radius will increase much mote rapidly and,
as a result, the contact pressure will Incre=ase more slowly than
indicated by Hertz's equations.

Ruoff and Chan developed a method for computing the contact
pressure distribution under elastic conditions between an indentor,
which 1s a body of revolution with brofiles represenied by z(r),
where z(r) is a monotonically increasing function with z(0) = 0,
and a flat anvil. It is shown that.when the applied force exceeds
ita 1'.miting value, the contact pressures obtained using a conical
indentror with a ;ounded tip are much lower than pressures expected
to be achieved with a paraboloidal tip for tb, same force. For

example, for a conical indentor with a rounded tip with 8 = 6° and

R = 100 um under a force of 200 kg kmaximum load used by Vereshchagin

and his colleagues) » a ~ 159 um and P = 1 Mbar. Thus, according to

[}
Ruoff and Chan, 1 Mbar igs the maxi-,m contact piessure that could

have be. achiaved by V.* eshchagin et al. in the opposed-an','l devic'®

made of carbonado. In tne case of a paraboloidal ind.*.tor under the

same conuitions (R = 100 um and app.ied force of .NC,g), a = 67.9 um

and P = 2 Mbar. In both examples, the condition a <> R was exceeded

[ . L]
and the cc.tact p.essures dSCerminrﬁ are not very accurate, efp."ially

L)
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in the first case. Because caibonado can be manufactured in different

shapes, it would be interesting to see if paraboloidal indentors made

of this material could reach the high pressures predicted by Ruoff

and Chan v, thout yielding. '
In the exper.l.ents performed by Kawai and Yakovlev described

above, the press:oes were determined using external calibration. The

first infernally calibuxted experiments *.n which pressures of 1 Mbar ;

were claime' to have been reached vere reported in 1976 by Mao and °

Bell [97]. The diamond pressur.’ cell used in the experir.ents con- .

sisted of two opposed a.vils made of single-crystal diamonds with

the work area of each anvi® approximately equ®* to 1.5 x°10~3 cm?.

A scissors-shaped lever-block assembly was spring-loaJed to ap;ly

a mechanical advantage of two. The diamonds were su,,orted by two 1

identical half-cylinder seats of tungsten carbi.e, with a 0 'J0l-inch :

thick zirconium shim placed between the low-presou'e—bear1ng aurfaces.

The half cylinders were adjusted to achieve and maintain alignmeﬂt .

of the diamonds to better than one-half a Newton‘®:color fringe intet- . K

ference of the diamond faces. A 0.010-ianch thick sheet of werl, . .
hardened steeli was placed between the high-pressure diamond faces.
A ruby crystal was placed on the steel and pressed into it as the |
-diamond anvils were squeezed together. . o g

The pressure was determined from the linear extension of Ehe

new NBS calibration scale based on the spectral shift of the R; ruby
fluorescence line with pressure. Ruby fluorescence was fxcited with
a cadmium-helium gas diffusion laser beam and its wavelength was
monitored continuously with 4 erectrometer linked to the pressure
cell by a fiber optic bundle. The pressure determination is believed
to be accurate to within 10 percent and the.data are reprcsucible.

No mechanical failure was observed in the diamonds and Mao and Bell . 3
believe that with improved support it may be possible to increase

the pressure to 1.5 Moar,

) *Diamond (and carbonado), at room temperature, fractures and
cracks rather than yields. However, according to Ruoff, plastic
flow should occur and should be followed by lracture, fragmenta-
tion, and pulverization of the tip during unloading.
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The primary standard for calibration of the ruby fluorescence
gauge used by Mao and Bell is the Decker equation of state for NaCl
based on the central force model. This equation of state in conjunc-
tion with lattice parameter measurements was used to obtain the B1-B2
transition pressure in NaCl (PT = 291 kbar). In a recent paper, Runff
and Chhabaldas [98] show that the central force model is inadequate
to describe NaCl, especially at high pressures where many-body forces
become very important. Therefore, the central force equation of state
for NaCl cannot be considered reliable. Using Keane's equation of
state for NaCl, the authors calculate that the B1-BZ trar~ition in
NaCl occurs at a pressure of 260 kbar rather than 291 kbar, as was
calculated from Decker's equation of state. Therefore, the pressures
determined by Mao and Bell using linear extension of the NBS scale
are too high. Mao a.d Bell also have failed to take into account
the wonlinearity of the temperature dependence of :He spectral shift
of the R; ruby fluorescence line, which could be significant in
materials such as ruby due to localized heating by the intense 1aser
beam.

The basic advantages of carbonado are not its superior prcyperties,
as initially claimed by Soviet scientists, but the fact that it is
inexpensive and can be made in various shapes of fairly large size.
Thus, it would be advantageous to develop materials similar to car-
bonado for use in the very high-pressure research.

In 1970, Hall [99], of Brigham Young University, reported prepa-
ration of carbonado by sintering diamond powder. The compressive

.
strength f the carbonado 1abricated from diamond powder ranges up
‘to 58 kbar and its density ranges u; to 3.48 g/em3, However, accord-
ing to Asaaa [100], materials obtained by sintering microcrystals of
diamond available in early 197: did not prove.uaeful as anvils,
Irn 1974, Hibbs and Wentorf [101] ggported developing Man-Made
diamonég>* compact with diamond-to-diamond wonding. While its

]
properties have not been described, according to Wentorf [102], it

%
« ® Trademark of Ger~ral Electric Company. ] .
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is superior to carbonado. The diamond compact 1s made by sintering, !
under conditions similar to those used for the synthesis of diamond ?

from graphite, and is expensive. For application in high-pressure

research, a film of up to 1 mm of diamond compact is deposited on i
materials such as tungsten carbide. A disadvantage of diamond com-
pact is the difficulty of depositing a film of compact on materials

of different geometrical shapes. Diamond compact, which is avail-

l
able commercially, has been used in an opposed-anvil device designcd i
. for Bundy [103], in which he achieved estimated pressures of about _— ;
0.6 Mbar. Higher pressures were not attempted due to possible
failure of this unique device. General Electric also has avail- !
able thick-walled carbide cylinders with diamond compact in the |
center, which are sold as wire drawings die blanks and could find i
! . *1 application in an pppoeed-anvil device. ;
\ NASA Lewis Research Center in Cleveland has an operational
b + 6-inch~dilameter, room-temperature se¢.mnented-sphere apparatus. A

12-inci:-diameter, cryogenic segmenfbd sphere is 1n the planning

stages and 1s expected to be constricted ina few years. Howeyer,
material procurement diffizulties may result in canceilation of

its construction ([104]. A 22-inch-diameter, room-temperaluare,

four:stage, segmentea sphere constructed for the Materials Center
a’s Jornell University is undergoing calibration tests [105].

. According to an earlier design, the hydrostat:’« pressure was to . 1
increase from 5.5 kbar at the outsf e of the outer shell to several
Mbar in the sample chamber. The sample diesieter was expected to .
be se>ut 2 mm, The pressure calfration scale was to be based on *
the increase in the decay rate of radloactive 7Be in ’Be0 with

L} L]
pressure. Ruoff's design is very unusual in that the fourth . ' !

stage, made,k of boron nitride, was to be in a plastic ste‘e. . ;

A large static press for the generation of pressures in the .
ﬂcar range in a volume of at least a few cm? has been constructed
by the Institute of H.gh Pressur> Physics [106]. The press weighs
4.5 x 107 tons and consists of a 50,000-ton ram in a 30-m high
steel frame. It .8 located in a building that was specially

.
;
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constructed for the press. Very few detalls pertaining to the press
have b_.en published; however, one of its major applications will be
the conversion of molecular hydrogen into its metallic phase, Accord-
ing to newspaper and science journal accounts [106-109], the press
will operate on the cascade principle and will involve five stages,
Proceeding from the cuter to the inner stage, the stages will be
madz2 of stainless steel, hardened steel, tungsten carbide, diamond
alloy (as described in Reference 110), and carbonado.

The finite-difference HEMP computer program in two or three
space dimensions and with time-dependence, recently developed by
Wilkins et al. [111] at the Lawrence Livermore Laboratory, can be
used to solve problems in solid mechanics involving plasticity and
material behavior. It includes a graphics program that monitors
the computer input and displays 1its output in the form of pictures
of three-dimensional objects and ig interactively capable of rotating,
translating, and scaling the object in the field of view. Three-
dimensional, finite-element meshes can be displayed either as line

drawings or half-tone pictures shaded from a light source. The

" program can also generate pictures with shading or with surface

contours determined by an arbitrary variable, such as temperature,
.st}ess, etc., The program could be modified to design extremely
k]
high-pressure static presses.

3. Theoretical Considerations

It has been generally accepted that the b?sic iimitation to
generation of static high pressures is the strength of materials used
in te.e highwyresaure apparatus. It is also accepted that the use of
different types of epparatus ".'ifferent configurations) cannot remove
this limilation. At present; the segmenited sphere and the opposed-
anvil apparatus appear to be the most promising configurations for
reachi;g the higheat attainalle preasurea.. However. there are two
schools of thought on the subject of the highest pressures that can
be s:hleved using the strongest availabl= materials, such as cartonado
and diamond compact, without yielding or fracturing. One group of .
material scientists a.d higl.-pressure researchers *s convinced that

the highest pressures that can be achiev®. in elastic case are

i
{
i
'i
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somewhere between 0.6 and < lembat. Another group believes that
multi-Mbar pressures can be gener:.ed using thes® materials withcut '
L]

the onset of plastic flow., Because theoretical calculations‘appear

to be uncertain and only approximate, the generaiion of marimum

pressures will have to be resclved experi’entally. However, the ab- *

sence of a reliable calibration szale makes this task very difficult.
The limitation on the maximum pressures that can be achieved in

a static apparatus is clearly illustrated by.the following example.

*
e L St

The highest preesures that can be generated in a aspherical pressure

vessel can be determined by considering a completely plastic sphere.
The equation for the radial equilibrium, expressed in aspherical

i B Y

i coordinates r, ¢, and 0, is:

acrr + 2(°rr‘°ww) =0 (38)
or r '

T i

- - t J ! -
with LY GWW’ Trw Twe Top* For von Mieses' criterlon, the con ,
dition for the onset of yilelding is: P

O,. = 0O (39)

06 -0 =g

rr oww rr 014

where 0¢ 1s the tensile yield stress. Assuming that no strain hard-

ening occurs, Eq. (39) holds throughout the deformation and Eq. (38)
can be written ’n the form:

do__ = 200dr/r. (40) ,
. -4
E Integrating Eq. (40), assuming that o, = const, leads to the expres- ,
| . . sion'for the internal pressure in a plastic sphere:*. ;
ro )
. . P = Pext'f(!anr—‘- (41)

' )
whe': r 1is the rudius of the spher&cal pressu.: Jessel, and

ext
. . 1 ]

P is the hydrostatic pressure at the surface of the'Ephere,

.
. .
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From this formula, e can be seen that as r +~ 0, P » », However,
the increase in pressure is very slow and the pressures that can
be reached in a laboratory-size vessel are nnt very high.

Ruoff [112] recognized that the basic deficiency in the deriva-
tion of Eq. (41) is the fact that co.is assumed to be constan.. He
pointed out that the large external pressures that can t. exerted on
a sphere in a multistage system can drastically increase°®the yie1d°
stress of material and, thus, can have a significant effect on the
pressures that can be attained in a static pressure vessel., In a
1973 paper, Ruoff [112] assumes that the yield strength 1s propor-
tional to the average dislocation line energy of material. Assuming
that the pressure dependence of the elastic constant, C, is linear,
it can be expanded in Taylor series, where only the first term is

retained:

C=Cqy+ Co'p, (42)

where Cy is the value of C at P = 0 and Co' is the -~ressure derivative

of C at zero pressure. Because og is proportional to C, it can be

written 1n the form: g

gg = ggg + 0g'P, (43)
wnere .

og' = ggoCp'/Cy. (44)

Using Eq. (38), subject to conditions given by Eq. (39), and the fact
that at large external hydrostatic pressures, P = - 00 = Tpps where

o, 18 the mean normal stress, Eq. (43) takes the form:

dorr = 2 0g0 [l-(Co'orr/Co)]dr/r. (45)
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» Assumi;g that the boundary conditions are: i
§
. g = <P at r = by > a, ¢
. rr ext (46) i
Opp ™ ? at r = ap, . . g
[ » L] E
Eq. (45) is easily .aregrated. The resulting expression for the i
[ .
internal pra2ssure inside a plastic sphere ‘ubjected to s, large
external hydrostatic prensure,.Pext,.is:

* g
t %
P = (Cy/Co') j[1 + (Co' Pext/Co)]K2000C0 /Co -1, 47) . g

]
"where K 1is the ratio of the outer radius to t}, inner r;dius. Aporox-

imate calculations made b:s Ruoff for the inner stage of a spherical

preésure vessel expose » to ¢xte,nal hydrostatic pressure, Pext = 500

Mbar, show that che int;rnal pressures for K = 100 and K = 1000 are

A i S £

P = 1.6 Mbar .*d P = 2.6 Mbar, respectively. Using tungsten carbide
instead of steel lncreases tue presaure.to'f = 3}? Mbar for K = 100,
Strain-hardening and the ;\8e of m-terials with very high values of
Cp could make it possible to contala pressures exceeding 10 Mbar.
Eq. (47) ipvolves .a ratio of =wo effective constants that can

only be estimated. A diffe:.:nt solution of the problem of deter-

mining the internal pressure that can be attained in a plastic sphere §
exposed to large exte®nal hydrostatic pressure was recentiy obtained
bv Fadeyenko ['13]. His sol.tion contains no unknown constants, but f

is based on the use of a generalized equation of state of materials

at high pressures.
Fadeyenko assumes that the tensile yield strength is a linear

function of pressure and can be expressed in the form given by

Eq. (43). Using the expression:

o -0-".:3‘0()

rr n , (48)
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where o is the mean normal stress and, assuming that In the p1 :sence
Eq. (52) can be

-
il

of a large e',ernal hydros;jatic pressure oy

written in the form:

d(~3P-20y)

60 (AQ'

Using Eq. (43), the solution of Eq. (49) is:
t V ’

At very hizh pressures (P >> aggg/op'):

goo\/ro\ ¥
Pext + 00' T *

An estimate of og' for typical solids under very high pressures

ggo + 0p'P

Opgg + OO'Pex (50)

600"

3+ 200' * (51)

where u =

~

P (52)

can be obtained using the following generally valid expression:

0pp = G/k = iiz%i;—gy , (53)

where G 1s the shear mocdulus, E is Young's modulusg, v is the

Poisson ratio, and k 1s a proportionality constant. For materials
n
£

with 0 K isotherm,
P = -
A[(po) 1]’

Young's modulus and ogo are given by the following relationships:

(54)

E = In(l - 2v) (P+A), (55)
nl-2
og0 = 5%'{*;“;2 (P+A), (56)
In (1-2v .
and op' --Z—E<T:\7-). (57)
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Tn the range of Mbar pressure, n = 3 to %, Using Eq. (57)
withn = 3 to 5, k = 10 to 30, and v = 0.25 to 0.33, ag' is four?
to be 0,04 to 0.3 and u 1is 0.14 to 0.77. A numerical example shows
that ar, internal pressure of A:S Mbar can be achiesed in a plastic
sphere with K = 100,

.

C. SHOCK-COMPRESSION EXPERIMENTS

Shock compressioff has provided virtually all the reliable pres-

sure density measurements of solids and liquids above 0.025 Mbar.

A Hugoniot (shock-compression curve) represents the locus of all
thermodynamic points that can be reached in a material when a shock
wave 1s passed through it. By varying the initial density through
compression or solidificetion, one can also obtain a set of different
Hugoniots. However, unless the initial state can be varied consid-
erably, the final Hugoniots will not differ sufficiently to justify
the extra work. Considerable variation in the path of the Hugoniot

can be achieved by means of reflected experiments (see Figs. 12 and

13). 1In a4 reflected shock experiment, the primary shock is passed
through the material and then reflected from an anvil, such as a
brass plate. The reflected wave then compresses the already compres-
sed material to a much higher pressure. The reflected Hugoniot curve
is very sensitive to the density reached by the first shock. Thus,
by vaiying the intensity of the first shock, it is possible to cover
a wide range of the thermodynamic space.

The shock process 1is adiabati-:, but highly irreversible. As a
result of this, very high temperatures are achieved in shock compres-
sion experiments. As can be geen from Fig. 13, the temperatures along
the Hugoniot are generally an order of magnitude greater than those
along the isentropes. Since the reflected Hugoniot 1s a two-step
compression, the final temperature at the same final density as that
for the unreflected one-step Hugonoit is lower. The limiting
case of compression by a shock wave reflected an infinite number of

times is equivalent to isentropic compression.
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\*dle very high pressures (>10 Mbar) have been achieved in the
past in stiff materials using high explosives (pressure >4 Mbar
h;ve been obtained by Soviet sc%entists, apparently by * eans of
shock waves from nuclear explosions), the maximum pressure th.:
can be generated by shock waves is éuck-lower in highly compr;;sible
low-density mateials. Thus, the highest pressure that can be achioved
in liquid hydroggn and 1iquid deuterium by means' of an unreflegted, one-~
step sl ck wave is ~150 kbar and -~220 kbar, respectively. The use of
a reflected shock wave makes it possible to increase the pressure
generataed in 1%quid deuterium to approximately 0.9 Mbar. However,
except*® for multiple reflected shock wavs , as it is commonly u;ed at
present, this tgchniqué cannot generate the 2ompressions required for
thie metallic-phase transition of molecular hydr‘ge;. (The high mate-
rial compressibility of hydrogen converts too ituch energy into thermal

heating, limiting the degree, of compression.) *

The high temperatures generated during shock compression tend
to greatly complicate any theoretical analysis .° Ho;ever, they also
allow molecules to penetrate their neighb.®s’' repulsive cote; to a
much greater extent than is possible in material comﬁrgss‘i to the
same density at low temperature. This makes it possible to perform ‘
theoretical analysis of the data to det,rmine the intermolecular .
pair potentials to very small internuclear distances. Thls point .
is 11lustrated in Section I, where it is shown that the high tem-
peratures generated in shock compression experiments make it possible
to determine the intermolecular potential at about the density required

13

to reliably predict the metallic transition.
The shock compression data ohtained by workers at the Lawrence °

Livermore Laboratory consists ol a Hugoniot poin! of hydrogen at

P = 40.5 kbar, determined in 1966 using high explosive; (26], and

8 Hugoniot poiﬂts at P = 0,82 to 0.94 Mbar, obtained in 1974 with

the two stage~gun at the Santa Barbara facility of General Motors
[52]. The experimental methods used in determining the Hugoniot
points by means of high explosives and the general data analysis .

techniques are widely used and well known, &nd will not be discussed
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in this report. The two-sﬁage gun is described in detail in Ref?r—
ence [32). Tt,refore, the discussion be ow will summar{gé the results
of sbock-compression experiments on molecula: hydrogen used in de-
riving its =guation of state. '

Table 8 summarizes the Hugialot data on nydrogen and deute! ium
determined from the shock-wave data acquired in unreflected one-step
compression experiments (P, V points) and in reflected two-step com-
pression experiments (the temperatures are computed). The Hugoniot
points obtained by Van Thiei and Alder [26] and Van Thiel et al. [22]
are also plotted in Figs. 5 and 6 (solid bars with circles at their
centers), together with theoretical Hugoniots calculated for a num-
ber of intermolecular p&tentials. The single point in Fig. 5 at
40 kbar was reached by zhocking liquid hydrogen a+* Py = 1 bar, Tp =
20.7 X, anda Vg = 28,6 cm3/mole, while the points in Fic. 6 were
reached by shoc! “.ig 1liquid deuterium at Py = 1 kbar, Tg = 20.7 K,
and Vg = 23.7¢ ww'!mo}e. The lower points at 210 kbar in Fig. 6 '
were obt- .23 by a #ip-”~ shock. The points near 900 kbar were
r-~-aued by t'zt 3rockxx§ to 210 kbars and then reflecting the shock
wave off & broec anv.]

Ber Lo wne pdrameters measured in shock-ccomplession experiments
ar pressure and cnange in volume, the ecrror 1is ir terms of change
in volume or comnression. In the case of Dy, the change in volume
in the first shock wave, from 22 to 7 cm3/mole, is 15 cm3/mole.
Because tue error is +3 percent, the error in absolute terms is 10.5
cm3/mole. Unfortunately, in the case af reflected shocks, the errors
roughly double. Therefore, in the case of deuterium further compressed
from 7 cm3/mole to 3.6 cm3/mecle by the zeflected shock wave, the
total absolute error is x1 cm3/mole.

The Hugoniot temper:tures listed in Table 8 were calculated by
van Thiel et al. [33) on the assumptior that the heat capacity of the
liquid hydrogen and deuteriuvm along the Hugoniot can be approximated
by that of a NDebye s0lid w' ¢h a superposed free-rotor heat capacity.
Recent calculations by Grigor'yev et al. [114] indicate that the
temperatures are one-half or their values given in Table 8. The

Russian authors attribute the discrepancy to the fact that van Thiel
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and Alder [26] and van Thiel et al. [33] used the specific heat at
constant volume of a solid (Cv = 3R), rather than that of a liquid
(Cv = 3/2R), used by Grigor'yev. However, calculations by Ross [6,
7], using liquid perturbation theory and liquid cell models are in
good agreement with those of van Thiel et al. [33] (see Section I).
The Hugoniot temperature has an important bearing on the theoretical
calculations of the intermolecular pair ootential of molecular
hydrogen snd on its equation of state calculated using experimental
Hugoniot data. In particular, higher dissoclation, complete excita-
tion of vibration states, and greater doviation from sphericity of
the Hy molecule (asymmetry of molecular forces) due to smaller

. effective volume of molecules will occur at the higher temperatures

* of 7000 to 14,000 K.

‘e A two;stage gun recently put into operation {115] at the Lawrence
Livermore Laboratory !s capable of achieving pressures slightly
greater ths, those achieved for hydrogen on the two-stage gun at

the Santa Bailara facility (just under 1 Mbar). Improvements in
techrology will make ;; possible to repeat these experiments with a
threefold incrozse in accurac.- over the previous work. Such experi-
m;';s will supply the data making .t poonible'to determine the high-
density equation of state of.molécular hydrogen to within £ percent
in pre ® ure at 1 Mba£ and test the theo ;:tical models of . the pair
potentiaf. Recent advauces in technology will also makr it possible
to simultaneously me . ure the electrical resistivity'of materials
undery’.ing shock compression. I.wever, it should be ;Mphasized that
shock experimei::s will not a*.ieve metailic-like densities.despite
possib *: Mbar pressures because, as the refult of shock he&;tng,lmuch

of the pressure is thermal and is not due to compression.

.
L] . .
.

D. ISENTROPIC COMPRESSION ' NN

The least known and least advanced of the three experimertal

methods 1s the isentropic—compressi\. technique. It 1s a constant
entropy, reversible process. Figs. 12 and 13 show that the increase

in temperature along the isentrope is quite small in comparison with .
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that along the Hugoniot and that the pressures generated, are closer

to the isotherms than to the llugoniota. Potent.lally, the final pres-
sures that can be achleved by isentropic compreSﬁion are ir. the multi-
megabar range. Thus, the attractive features of the isentropic . .

experiments are tha. the compression that can be attained i1s much

R e s A L hr s

higher than in the static experiments, although the temperatures are
not nearly as high as in the shock compression method. However, one

of the drawbacks of this method as it was applied to hydrogen is its

failure to measure pressure dire.tly. The density of the sample can

be determined from x-ray shadowgraphs or gamma radiography, but the

; pressure has to be obtained from hydrodynamic or m:gnetohydrodynamic
calculations. 1In addition, only a single point can be measured in
each experiment. While all of the work done so far has nrot provided i
aany useful (accurate) high-density equation-of-state measurements,
considerable progress was made by Grigor'yev et al, [114,116] and
Hawke [117] in their attempts to achieve metallic-phase transition
in isentropically compressed hydrogen. ¥
In the experiments performed by Grigor'yev [114,116] a cylindrical

high-explosive charge compressed a cylindrical metal shell containing

R Y

hydrogen gas at a temperature of 300 K. The density of hydrogen was
determined directly by measuring the diameter of the shell during

isentropic compression by means of gamma radlography, using a device

with a short exposure time, The pressure was calculated from a hydro-
dynamic computer code. Six different pressure vs density points were
obtained at densities between 0.45 and 1.95 g/cm® (4.48 to 1.03 cm3/mole)
and at calculated pressures between 0.37 and 8.0 Mbar, by varying the

initial gas pressure and parameters of the enclosure. Unfortunately, i

generate a magnetic field that diffuses through the stainless steel

4
% no other experimental details are given by the Soviet authors. }
i Hawke et al. [117] developed a magnetic flux compression technique f
ﬁ for isentropic compression of soft materials. In the device used by :
f Hawke, a capacitor bank is discharged through a pair of coils that :
¥ |
|

liner surrounded by a high-explosive charge. When the diffused mag-
netic field reaches a peak, the charge 1s detonated, imploding the

.
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cylindrical liner., The implosion compresses the magnetic flux,

increasing the .ignetic field intensity. (In the hydrogen c;mpression
experiments, the magnetic-field intensity increased from ~60 kG to ’
~10 MG in about 10 us.) Eddy currents generated in the sample tube 4
and the liner interact with the magnetic field and exert an outward {
pressure on the liner and an inward pressure on the sample tube..

The sample volume compression is determined from the ratio of the

sample tube diameters meas-.red during and before the experiment by
means of a flash.x—ray atvice, A one'dimensional magnetohydrodynamic
code is used to c.*.culate the pressure from the compression of the
sample. A wire is placed axially, in the sample and the resistance
between the wi'e and the saﬁple tube is.r-nifored to detect metallic-
phase transition, N .

Liquid hydrogen at T = 29 K was:uaed by Hawke et al. [117] in the

experiments. Unfortunat.'y, they obtained ,nly a single point for
L)

hydrogen at an estimated press.*:2 between 2 (v d 5 Mbar and‘at an
apparently metallic conduct;vity. , Since Hawke has not had the {
. opportunity to repeat the experiment, the d+:a obtained should be
| considered preliminary. . .
Table 9 summarizes the results of isentropic compr(.sion experi-
ments performed by Grigor'yqv et ai. [114,116) and Hawke ‘et al, [lf?].
This table 1lists the density of hydrogen measured during the experi-

men¢s and the pressure and temperature computed from a hydrodynamic

code by Grigor'yev and a magnetohydrodynamic code by Hawke. The
three lower pressure points (P < 2.63 Mbar) determined by Grigor'yev
are in excellent agreement with the theoretical isentrope for liquid

molecular hydrogen calculated by the authors. The remaining three

higher pressure points (P > 3.24 Mbar) obtained by Grigor'yev are J

shifted in respect to the isentrope and the lower pressure points.

g At a bl Ao L I8 g o MR SR S

This shift 18 interpreted to be a transition occurring at 2.8 Mbar

;
at 0 K. It is estimated that the temperature at this pressure is |

e

close to 6000 K, while the mefting temperature of molecular hydrogen
1s estimated to be 700 K at P = 2,44 Mbar and Y10 K at P = 4.66 Mbar.
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Therefore, the trgnsition observed is interpreted as the phase

transition into metallic state accqmpanied by a change in density

Table 9

RESULTS OF THE *.SENTROPIC~COMPRESSION EXPERJIMENTS ON HYDROGEN

pexp
No Pcal Tcal Ref
g/cm? Mbar °K

1 0.45+0.03 0.37 3100 {116]

2 0.67:0.03 1.00 4200 [114]

3 0.98+0.08 2,63 5600 [116]

4 1 2 ~1500 {117]

5 1.15+0.1 3.24 60 [116]

6 1.4 +0.14 4.40 6500 [116]

7 1.95+0.39 8 9100 [116]
from 1.08 to 1.3 g/cm (from 1.87 to 1.55 cm3/mole). As a result of
a very large uncertainty in L'oth density and pressure, the pressure
vs density poigt detei.ained by Hawke in magnetic flux experiments

. does not contradict the data obtained by Grigor'yev.
In an isentropic experiment, the final temperature is proportic'.-
+ al to the initial' temperat.re multiplied by the compression. Therefore, °
the much higher temperatu-,» achieved in Grigor'ye.’® experiments near.
’ metallic Aensity (6000 K) in comparison -vith Jhat of ﬁawke \-'2500 K)
is not a discrepancy, but s+he result of different initial temperatures
(Grigor'yev used gaseous hydrogen at T, = 300 K, and Hawke u;ed liquid.
hydrogen at Ti = 20 K). Also, because these temperatures are computed
and not measured, they likewise reflect differences in the equation-of-
stat? models, .
As can be seen from Table 9, the error in measuring the density .
of molecular hydrogen claimed by Grigor'yev is about 8 pe;cent. No

details or error estlmates are given concerning the pressure calculations

i .
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using the hydrodynamic code, However, such calculations are
rather difficult and insufficiently accurate. Also, it 1is most
likely that a one-dimensional, rather than two-dimensional, hydro-
dfnamic code was used in pressure computations. Since the experimental
geometry is tvo-dimensional axisymmetric, the isentropic compression
experiments by Grigor'yev are 1ot considered definitive and the data
obtained are insufficiently accurate to be used in theoretical calcula-
tions of t' - .tions of state of hydrogen [6,7]. Partly as a result
of this criticism, Grigor'yev et al. publ?’~hed cheir second paper [114],
which includes a detailed discussion of the a, ~eement between the avail-
able experimental data and the Hugoniots, isotherms, and isentropes
calculated from the Mie Gruneisen equation of state for solid molecular
hydrogen and an equation of state for liquid molecular hydrogen based
on that for the solid phase, using their isentropic compression data.
This later paper also includes an additional pressure vs density point
at P = 1 Mbar (point No. 2 in Table 9). Although no error estimate in
determining the pressure is given and the hydrodynamic code used in
the calculations is not described, the results of their theoretical
calculations are in good agreement with the available experimeutal
data.

Alt'shuler et al. [118] have proposed a modification of the
technique used by Grigor'yev, in which quasi-isentropic compression
is obtained by means of multiply reflected shock waves. Thé'major
change in the experimental.set up is that a concentric layer of
solid molecular hydrogen is deposited on a cylindrical rod made of
high-impedance material, such as copper, cooled to liquid helium
temperature. The copper rod is located at the center of the cylin-
drical charge system. An extra cylindrical layer of low-stiffness
material is added on the inner side of the imploding copper liner.
During the initial stage, isentropic compression is achieved by the
gaseous products of the low-stiffness material vaporized by the
(. nverging shock wave. During the later stages, compression is .y
means of the imploding liner. Compression by multiply reflected
shock ;"aves makes 1t possfble to generate much higher pressures in
hydrogen with a much smaller increase in entropy. For example,
assuming that the ratio of acoustic impedances of material cé;pris—

ing the rod with hydrogen is m, the increase in entropy of the system
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under consideration 1s 4/(3m2+1) times lower than that of the system

shock compressed to the same pressure. The problem considered is . E
actually similar to compression of a soft target impacted from
opposite directions by two heavy flyers. Numerical calculations by’ .

the authors for two copper flyers impacting a layer of solics hydrogen '
*

at a velocity of 2 km/sec show that the final pressure in hydrogen
is 1.18 Mbar. The amplitude of the first shock wave was 8 kbar; that
of the second, third, and fourth was 32, 64, and 125 kbar, respect:;ely.
Further increase in pressure to its maximum value was genérated by
reflected shock waves with rapidly decreasing amplitudes. The fr:, tion ’ i
of the thermal pressure does not exceed 5 percent.

Yampol'skiy [119] discussed various techniques of isentropically

compressing materials by shock waves. Among the methods that could

i

be applied to hydrogen is the use of a charge consisting of layers

of explosives with different detonation velocities. The thickness

of each layer cau be chosen so that the pressure exerted by the

detonation prouducts would increase monotonically with time. Cylin~

i e i

drical layers of charge could be used in an implosion system. 1In a

similar fashibn, the use o' several iayers of molecular hydrogen de-

posited on the cylindrical copper rod in the implosion scheme proposed
by Alt'shuler et al.*[118] would enhance compression.
A significant contribution to magnetic implosion experiments was
recently reported by Scudder [120], who has developed a magneto-optic
. technique employing Faraday rotation for measuring multi-megabar mag-
. netic p}essures generated by magnetic flux under compression. This

technique, together with a sample field probe, is capable of providing

. *sufficiently accurate pressure vs. density data of magnetically im-

. * ploded hydrogen as well as other soft materials over a wide dynamic

range.

-
ST

* E._'uASFR_COMPRESSION

. . A-:érding to Nuckolls et al. [121], achievement of lacer fusion

will r.juire symmctric spherical compression of heavy-hydrogeu isotopes
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to densities of ~103g/cm3,* or+10% times the density of'liquid hydro-
gen.  Intensive research in this area led t°* the devglopmeng of.i to
1.3 kJ lasers both in the U.ited States and th~ Soviet Union. Several
laboratories in both countries ha;e designed (and are planning t.' cor-
struct in the near future) 10 to 20 kJ laser systems. Compared to
laser fusion, an approximately tenfold compression required for
metallic-phase transition of hydrogen is a relatively simple problem,
Thus, it is somewhat surprising that only a few papers have been
published on the possibility of attaining laser-generated transition
of molecular hydrogen into a metallic phuase.

Anisimov {123] has considered the problem and obtained numerical
results on the assumption that the laser-inducei compression’due to
the subsonic thermal wave 1s equivalent to compression by the accel-
erating motion Ui a piston in an ideal gas. The piston path and the
energy flow are determined on the assuﬁption that the process 1s
adiabatic and the approxima.*. adiabatic equation of molecular hydro-
gen is given by the 0 K isotherm derived by Trubii.yn [25], written '
in che following form:

.

P=ap’, . (58)

where vy = 3 and a = 3.3 x 10% (the pressure is given in bars and the
density in g/cm3). Inhomogeneous, one-dimensional adiabatic compres-
sion by a piston has a self-similar solution.** Assuming that the
shock wave 1is not formed before the piston travels a distance X

the piston position is given by the equation:

x=x (l+r-2 an, (59)

Lu..,‘ el el o G s bk L e e kb e e Ao o+ 2 oK et o A A s s W e o

*Basov's scheme [122] calls for an orde; of-magnitude lower
compression (to density of ~102 g/cm3), requiring about the same
amount of laser energy to initiate laser fusion in a 100-fold
larger hydrogen isotope mass.

Kk
The solution is not discussed by Anisimov. However, its main
features are summarized by Lengyel [124].
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wheve r = 1 - =B 4nd c, 1s the initial sonic valicity. * The shape

* Zo
of cthe laser pulse is given by the ¢ juation:

q(t) = ‘Docg r~2 (1-2,/1), (60)

and the total energy per unit area expended in compression up to the

.time tm is: ) . 'l
1 - . .
. Q ~ 3§ ogelx,r. "1, (61) : ‘
Com
where r =1 - —— . (62)
o

Assuming that at the end of compression, the nressure in a layer
of thickness § exceeds transition pressure Pt’ and determining x, by
maximizing Q, then o O.Sa'z, X = 2.5a6, and Q ~ SGPt, where a
is the compression *atio. Tk~ thickness 8 is determinc*. from the
experimental conditions. Assuming *hat 6 = 0.1 mm and Pt = 5 Mbar s
then Qpax = 7,1013 W/cm? ind Q * 2.5.10% J/cm?. 1In order for the
preblerr to be one-c.mensional, the area iri*.diated by the laser sho‘ld
be on rhe order of X . Disregarding reflection and other losses, the
laser energy reruiied for the metallic-phase transition of molecular
hydrogen is about 2 kJ. .Tecause “he transition pressure is believed
to be 3 Mba., laser-irJuced metailic-phase trar3ition of hydrogen may
be within the reach of present-day technology. .

Van Kessel aad Siagel [125) observed the ﬁpatial develcpment of
laser-driren shuck waves in a plane so0lid hydrugen target using high-
speed photography The peak pressure achieved in these experiments,
as determined from the shock velrcities generated by a 10 J . nsec
pulse from a Nd glass laser, was 2 Mbar. The authors suggest that

a prograrmed lase- pulse may be used to observe metallic transition

of hydrogen.

*
1/YAccording to Anisimov, in the case of spherical compression,
r~r* .
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F. ELECIAON-BEAM COMPRESSION
In a 1971 paper, Bogdankevich and Rukhadze [126] discussed the
possibility of obtaining metallic hydrogen by means of a.beam of

relativistic electrons. The Fermi energy of an electron gas is
proportional to n2/3, where n is the number of elec.vons, Multipie
ionization of atoms of a target bombarded by a beam o.* relatiéistic
electrons can result in the gas becoming di:generate \*.th the ﬁresaure
determined by the electron pressure. These authors determine the
parameters of a beam of relativisitic electrons necessary to arJvleve
pressure of ~1 Mbar in a degene-ate gas, requiring .+ electron con-
-;entration of 1.5 x 1023 cm™3, corresponding co quintuple ionization
of material., Assuming a volume V = o of material, where a 1 on

the order uf tle leng;h of the mean-fre, path of an electron in the
electron b.lm (seve:«11l millimet .5 for 3-5 MeV electrons) ‘quintuple
innization requires energy’ of about 4 ¢ 10%a°, J. S;tting a equal

to 0.5 cni, the toval beam energy required 4+s 50 kJ, 2 " for ~5 MeV
ele,\‘ons, the number of electrons in the nulse has .. be ~1017,
Assuming that tue ;ﬁlse dur:tion is 105 sec. the electron beam power
is estimated to be -5 x 10° W and the cur.ent, ~10 JkA. Under such
conditions, the elec- ons will interact with the ts,-get layer ‘having
‘4 thickness of 0.3 cm. Therefore,'in order to obtain metallic hyc' o-
gen, small granulns of an easily ionized suﬁstanc; should b~ placed
near the surface of liauid hydrogen and irradiated by a focised .
electron beam of relativistic electrons. If the temperafhﬁ; of the
electron gas during®.nultiple ionization ¢i the tar “.t by rlativistic
electrons 1s small compared with the mean ionizatior, energy, the
method described above may be used to induce metalle:-pha, transi-
tion of molecular hydrogen. ..

Similar to compression by laser radiation, metallic-phase tran-
sition of molecular hydrogen by means of a relativistic beam if. a
much simpler problem than achievement of electron-beam indul:d fusion.
According to unclassified sources [127], the most intense source of
electron beams at the present is the Aurora facility at Harry Diamond
Laboratories in White Oak, Maryland. The Aurora facility generates

a 3 MJ electron beam of 1.25 x 10~/ sec duration, which is much more

. 2r
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than is required to obtain metallic-phase transition of hydrogen.
However, it is not well suited for pellet-compression work. Accord-
ing to Velikhov [127], a 5 to 6 MJ electron-beam facility intended
for electron~beam-induced fusion and, thus, ideslly suiited for com~
pression work is being designed in the Soviet Union and should be

constructed in about five years,

However, according to Keldysh [128], Soviet scientists have al-
ready succeeded in generating electron beams with densities or
5 x 10°2 W/cm?, which 1is close to the electron density required to

initiate electron-! eam-induced fusion.

G. RECENT REPORTED OBSERVATIONS OF METALLIC HYDROGEN

The isothermal compression experiments described below and the
isentropic compression experiments discussed in Section V, subsection
D, in which metallic-phase transition of molecular hydrogen may have

been detected, were made before the possibility of the insulating

molecular-conducting molecular hydrogen transition was discussed in
the scientific literature. 1If, indeed), such a transition does occur :
in molecular hydrogen, it should take r.lace at pressures below the

transition pressure to a mona* mic metal. Because, in all experiments,

the transition was inferred from abrupt changes in electrical resis- ©

tivity, it is impossible to determine which transition may have been

et i

detected. However, it is not at all certain that a phase transition
has occurred in isentropic experiments performed by Grigor'yev [114,
116} and Hawke [117] and whether the pressures generated were suffi-
cliently high for the metallic-phase transition to have taken place.

The pressure generated in isothermal experiments was much lower and

the first discontinuous decrease in electrical resistivity observed
would more likely than not indicate insulating molecular-to--conducting
molecular phase transition.

In a paper published in 1975, Yakovlev et al. [95] reported i
achieving transition of molecular hydrogen into its metallic form

using the ¢ pposed-anvil apparatus made of carbonado. In the experiments {

)
4
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performed, a8 thin film of solid molecular hyd-ogen, deposited on

the surface ni the flat carbonade anvil cooled to 4.2 K, was compres-
sed by a conical anvil with a rounded tip. As the force applied to
the anvils reached 20 kg, the electrical resistivitv (p) was observed
to decrease abruptly from 10% ohm to ~102 ohm. The six order of
magnitude dropy in the electrical resistivity of hydrogen was at-
tributed to the metallic-phase transition of hydrogen at contact
pressures estimated in excess of 1 Mbar,

The fact that the decrease in p was actually caused by a phase
transition was verified by initially compressing a sample of molecular
hydrogen to the point where p decreased vo ~102 ohm. The force on
the anvll was then decreased until p began to increase slightly,
indicating the appearance of the insulating phase. The temperature
was then slowly raised, keeping the force constant. Under these
conditions, a rise in the temperature from 4.2 K to ~18 K resulted
in a sudden increase of electrical resistivity of tae hydrogen
sample to its normal value for the solid molecular hydrogen (~108
ohm) . )

Experiments were also performed using thick films of hydrogen.
However, the electrical resistivity of the samples did not change
with the+ipplied pressure. Failure to achieve phase transition in
thick films of hydrogen can possibly be attributed to the fact that
the high pressure.achieved by means of opposed carbonado anvils is
.the pressure acting at the sunrface, which decreases sharply with
depth, }ather --han hydrostatic pressure. Another possibility is that
the increase in conductivity in thin films is due to shorting of the
anvils.

iﬁ his latest series of experiments, Kawai [82] has also reported
achieving uvetallic hydrogen by compressing hydrogen gas at room temper-
at@ue until it became electrically conducting. Xawail used the modi-~
fied 6-8 anvil segmented-sphere apparatus described in Section V,
subsection B. In the experiments performed, the sample chamber was
surrounded by semi-sintered Mg0 and cardboard spacers. The spherical
outerlstage shell ¢f the apparatus was enclosed between the upper and

lower holders, witii a rubber ring placed between them to prevent
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gas leakage. Gas w» 3 injected and evacuated and the*>xygen that may
have remained was removed by injecting and evacuating n: *rogen.
Nitrogen was then removed by twice~injecting and evacuating hydrogen.
The hydrogen gas used in the experiments was injected and compressed
to 100 bar by a bomb, with the sample chamber volume at this pressure
= 1 mm3. The pressure in the oil reservoir was gradualiy increased
by an external load. The voids in the Mg0 were closed at a pressure
of 200 kbar, with some of the hydrogen gas expelled into the sample
chamber, As the external load was increased above 855 tons, the elec-
tri:al resistivity of the sample dropped ahruptly from 126.3 Mohm

to 1G" ohm and then to zero. In the absence of calibration, the
pressure at which the inferred wetallic transition occurs is

unknown,

In ancther series of experimeiits in which hydrogen gas was
replaced with Mg0, no such drastic change in the electrical resis-
tivity of the sample was observed even when the external load was
increased to 1100 tons. Earlier experiments by Kawai [80] have
demonstrated that Mg0 becomes metallic at pressvres Lelow those
used to compress hydrogen. Also, extremely high preSSufes could
hz*e reduced Mg0 by hydrogen to a mixture of Mg and H,0. Therefore,
in yet another series of experimencs on hydrogen, Mg0 was recplaced

with diamond powder. Once again, the electrical resistivity was

observed to decrease to almost zero under the same load. Unfortunately,

the experiments were made using six inner anvils made of Al;03, which
were determined by Yakovlev et al. [91] to undergo metallic-phase
transition~--thus providing a possible alternate explanation for the

observed decrease in electrical conductivity under high pi1a2ssure.
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Please correct the fourth sentence in the first new paragraph on p. xv

to read as follows:

However, another group of materials scientists and high presaure
specialists, which includes such prominent researchers as Ruoff,
Bundy, and Wentorf, is firmly convinced that static pressures
above 1 Mbar have not yet been achieved.
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